Wie funktioniert der Treibhauseffekt?

Über den Treibhauseffekt ist schon viel geschrieben worden, und viele Vergleiche werden angestellt. Vieles davon ist jedoch irreführend oder sogar falsch.
Der Treibhauseffekt kommt dadurch zustande, dass bei zunehmendem CO2 ein leicht wachsender Anteil der Infrarot-Strahlung aus den oberen, kalten Schichten der Erd-Atmosphäre (d.h. der Stratosphäre) in den Weltraum abgestrahlt wird.
Der Sachverhalt ist im Detail kompliziert, daher ist es auch so einfach, den Bürgern mit Übertreibungen, Verzerrungen oder Lügen Angst zu machen. Hier möchte ich ohne Formeln und anschaulich die Grundlagen des atmosphärischen Treibhauseffektes physikalisch korrekt beschreiben, bei dem das CO2 eine wichtige Rolle spielt.

Aus dem Weltraum betrachtet, erfolgt der Temperaturhaushalt der Erdoberfläche und der Atmosphäre durch

  • Einstrahlung von kurzwelligem, zum großen Teil sichtbarem Sonnenlicht und durch
  • Abstrahlung von langwelliger unsichtbarer Infrarotstrahlung.

Wenn der Energieinhalt der Einstrahlung gleich ist wie der Energieinhalt der Abstrahlung, gibt es ein Gleichgewicht, und die Durchschnittstemperatur der Erde bleibt konstant. Eine Erwärmung findet immer dann statt, wenn entweder die Abstrahlung abnimmt oder die Einstrahlung zunimmt, und zwar so lange, bis das Gleichgewicht wiederhergestellt ist.

Die Infrarotabstrahlung ist der einzige Weg, wie die Erde Energie (Wärme) in den Weltraum abgeben kann. Deshalb ist es notwendig zu verstehen, wie die Mechanismen der Infrarot-Abstrahlung funktionieren.

Die Mechanismen der Infrarot-Abstrahlung in den Weltraum

Es gibt nur 2 Möglichkeiten, wie die Erde Energie in den Weltraum abgeben kann:

  • Die Moleküle der Erdoberfläche oder der Meeresoberfläche strahlen Infrarotwellen bei der Bodentemperatur ab (durchschnittlich 15°C = 288 K).
  • Die Moleküle der sogenannten Treibhausgase, vorwiegend Wasserdampf und CO2 (in sehr viel geringerem Umfang Methan und einige andere Gase), strahlen Infrarotwellen aus der Atmosphäre heraus ab, bei der jeweils in ihrer Umgebung herrschenden Temperatur. Die anderen Gase der Atmosphäre wie Sauerstoff oder Stickstoff haben keine Möglichkeit, nennenswerte Mengen an Infrarotstrahlung abzugeben.
    CO2 unterscheidet sich von Wasserdampf darin, dass es nur in einem kleinen Wellenlängenbereich aktiv ist. Andererseits nimmt der Anteil der Wasserdampfmoleküle in der Atmosphäre ab 5 km Höhe sehr schnell ab, weil der Wasserdampf bei Abkühlung wieder zu Wolken kondensiert und dann abregnet. Das können wir daran erkennen: Im Flugzeug in 10km Höhe sind wir stets über den Wolken. Und oberhalb der Wolken gibt es so gut wie keinen Wasserdampf mehr.
    CO2 ist jedoch bis in die höchsten Schichten der Atmosphäre gleichmäßig vermischt mit den anderen Gasen, vornehmlich Sauerstoff und Stickstoff.

CO2 und Wasserdampf sind also wie zwei konkurrierende Handballmannschaften, von denen die eine (der Wasserdampf) nur bis zu Mittelline laufen darf, und die andere (CO2) sich nur innerhalb eines schmalen Längsstreifens des Spielfeldes bewegen kann. Dieser schmale Längsstreifen wird ein klein wenig breiter, wenn die „CO2 Mannschaft“ mehr Spieler (mehr CO2) bekommt. Das Tor ist für beide Mannschaften das gleiche (der Weltraum) und es erstreckt sich über die ganze Breite des Spielfelds. Solange der Ball noch weit vom Tor entfernt ist, fängt ihn ein anderer Spieler eher auf, als dass er ins Tor gelangt. Dieser andere Spieler spielt den Ball in eine zufällige Richtung wieder ab. Je dichter die Spieler stehen, desto schneller werden die Bälle wieder gefangen und wieder abgespielt. Je näher der Ball zum Tor kommt, desto weiter stehen die Spieler auseinander. Das heißt, dass der Ball dann leichter zwischen den Spielern hindurch ins Tor gelangen kann.

Solange sich noch andere Treibhausgasmoleküle in der Nähe befinden, kann also die Infrarotstrahlung nicht in den Weltraum gelangen (zu dicht stehende Mitspieler), sie wird wieder von den anderen Molekülen aufgefangen und von diesen wieder abgestrahlt. Konkret hat die Infrarotstrahlung in der unteren Atmosphäre nur eine Reichweite von etwa 25m, bis sie wieder von einem anderen Treibhausgasmolekül aufgefangen wird, meist von einem Wassermolekül oder von CO2 . Je dünner die Treibhausgase (weniger Mitspieler) in der Atmosphäre mit zunehmender Höhe werden, desto wahrscheinlicher wird es, dass die Infrarotstrahlung in den Weltraum gelangt.

Daraus kann man schließen, dass es im Prinzip 3 Schichten gibt, aus denen Infrarotstrahlung in den Weltraum gelangt:

  • Wenn die Luft trocken ist und ohne Wolken, dann gibt es einen Teil des Infrarots, das sog. „atmosphärische Fenster„, das direkt vom Boden aus in den Weltraum strahlt (das ist, wenn es keine oder nur sehr wenige Wasserdampf-Spieler auf dem Feld gibt),
  • zwischen 2 und 8 km Höhe, durchschnittlich in 5 km Höhe, ist der obere Rand der Wolken, von wo aus die Wasserdampfmoleküle der Wolken einen großen Anteil der Infrarotstrahlung bei durchschnittlich 255 K = -18°C in den Weltraum abgeben
  • der Anteil Infrarotstrahlung im Wellenlängenbereich um 15 Mikrometer herum (der schmale Streifen des Spielfeldes) wird vom CO2 bis in die hohen kalten Schichten der Stratosphäre transportiert, von wo aus sie bei etwa 220 K = -53°C in den Weltraum abgestrahlt wird. Dadurch kommt es zu einer Konkurrenzsituation, ob ein Wassermolekül direkt abstrahlen kann oder ob seine Infrarotstrahlung noch von einem CO2-Molekül aufgefangen und in die Höhen der Stratosphäre weitergeleitet wird.

Der Treibhauseffekt

Wie kommt es nun bei einer wachsenden CO2-Konzentration zur verringerten Energieabstrahlung in den Weltraum und damit zu einer Erwärmung?

Dafür ist es wichtig zu wissen, dass mit abnehmender Luft-Temperatur die abgestrahlte Energie stark abnimmt und dass mit zunehmender Höhe die Temperatur abnimmt. Wenn die CO2-Konzentration im Laufe der Zeit zunimmt, dann wird der Wellenlängenbereich, in dem das CO2 für die Abstrahlung „zuständig“ ist, ein klein wenig breiter (der schmale Streifen des Spielfeldes). Das bedeutet, dass ein kleiner Teil der Infrarotstrahlung, die sonst bei 255 K vom Wasserdampf abgestrahlt würde, nun bei 220 K vom CO2 abgestrahlt wird, also mit deutlich niedrigerer Energie. Das bedeutet in der Konsequenz, dass die Energie der Gesamtabstrahlung leicht vermindert wird — die als konstant angenommene Einstrahlung des Sonnenlichts also überwiegt und damit ein Erwärmungseffekt eintritt.

Der Effekt ist allerdings nicht so groß, wie er gewöhnlich in den Medien dargestellt wird:
Denn seit dem Beginn der Industrialisierung hat bei einer Steigerung der CO2-Konzentration um 50% von 280 ppm auf 420 ppm die Infrarotabstrahlung der Erde um grade mal 2 Watt/qm abgenommen. Das sind bei einer durchschnittlichen Abstrahlung von 240 Watt/qm1 nur knapp 1% in 170 Jahren.
Jetzt kennen wir die erste Möglichkeit, wie das eingangs erwähnte Gleichgewicht durch eine Veränderung der Abstrahlung gestört wird. Aber bisher nur in sehr geringem Umfang.

Die zweite Möglichkeit, das Gleichgewicht zu stören, sind die Änderungen der Einstrahlung.
Die Schwankungen der Einstrahlung, die durch wechselnde Wolkenbedeckung hervorgerufen werden, sind bis bis zu 100 mal größer als die genannten 2 W/qm (was Besitzer von Photovoltaikanlagen bestätigen können), die dem Treibhauseffekt zuzurechnen sind. Damit zusammenhängend nimmt in Deutschland laut Deutschem Wetterdienst die Zahl der Sonnenstunden seit 70 Jahren um 1,5% pro Jahrzehnt zu2. Also in weniger als 10 Jahren ein größerer Effekt als durch den Treibhauseffekt in 170 Jahren. Für einen genaueren zahlenmäßigen Vergleich müssen beide zu vergleichenden Messdaten im betreffenden Zeitraum vorhanden sein: In dem Zeitraum der letzten 40 Jahre gab es durch die Zunahme der Sonnenstunden in Deutschland die 6-fache Erwärmung im Vergleich zum Treibhauseffekt. Die Änderungen der Sonneneinstrahlung sind also in weitaus größerem Maße für die Erwärmung der Erde verantwortlich als die Änderungen der CO2-Konzentration.

Damit ist der allgemein bekannte positive Treibhauseffekt beschrieben und eingeordnet. Es gibt also keinen Grund, mit dem Treibhauseffekt Angst und Panik zu begründen. Und es ist dringend notwendig, dass sich die Forschung, die Medien und die Politik mit dem Einfluss und den Ursachen der zunehmenden Sonnenstunden beschäftigen.

Es fehlt noch ein wichtiges Phänomen: In der Antarktis führt der Erhöhung der CO2-Konzentration zur Abkühlung, das nennt man den negativen Treibhauseffekt.

Der negative Treibhauseffekt in der Antarktis

Es gibt einen eigenartigen Effekt, wenn wir die eine Gegend der Erde betrachten, wo die Erdoberfläche zeitweise noch kälter ist als die 220 K, bei der die Infrarotabstrahlung des CO2 in den Weltraum erfolgt: In der Antarktis, wo Temperaturen unter -60°C (=213 K) keine Seltenheit sind, finden wir tatsächlich einen negativen Treibhauseffekt.
Wo also eine Abkühlung bei zunehmender CO2-Konzentration stattfindet.
Bei zunehmender CO2-Konzentration nimmt zwar wie sonst auch der Anteil der Infrarotabstrahlung des CO2 zu. Jetzt ist aber die CO2-Schicht mit 220 K wärmer als die Erdoberfläche der Antarktis. Und damit wird vom CO2 in der Atmosphäre mehr Wärme abgeführt als von der Erdoberfläche darunter.
Mit anderen Worten: In der Antarktis gilt, dass aufgrund der Zunahme der CO2-Konzentration die Wärmeabfuhr in den Weltraum verstärkt wird, und es demnach dort kälter wird und nicht wärmer.




Treibhauseffekt-Rückkopplung durch Wasserdampf


[latexpage]

In der Klimadiskussion wird das Argument der Rückkopplung durch Wasserdampf dazu herangezogen, um die Klimawirkung der Treibhausgase — die Sensitivität bei Verdoppelung von deren Konzentration in der Atmosphäre — , die nach Strahlungstransportgleichung und generellem Konsens maximal 0,8° beträgt, um einen angeblichen Faktor 2-6 zu verstärken. Allerdings wird das gewöhnlich nicht genauer quantifiziert, es werden in der Regel nur Formeln mit dem „finalen Feedback“ angegeben.

Vor kurzem haben David Coe, Walter Fabinski und Gerhard Wiegleb in der Publikation „The Impact of CO2, H2O and Other ‚Greenhouse Gases‘ on Equilibrium Earth Temperatures“ unter anderem genau diese Rückkopplung beschrieben und analysiert. In Anlehnung an ihre Publikation wird dieser Effekt mit dem teils gleichen, teils leicht unterschiedlichen Ansatz im folgenden hergeleitet. Die Ergebnisse sind fast identisch.

Dabei wird hier von allen anderen Effekten, die bei der Bildung von Wasserdampf auftreten, wie z.B. Wolkenbildung, abgesehen.

Der grundsätzliche Mechanismus der Wasserdampfrückkopplung

Ausgangspunkt ist eine Temperaturerhöhung der Atmosphäre um ∆T0, ungeachtet deren Ursache. Typischerweise wird der Treibhauseffekt als primäre Ursache angenommen. Die Argumentation ist nun, dass die erwärmte Atmosphäre mehr Wasserdampf aufnehmen kann, d.h. der Sättigungsdampfdruck (SVP = „Saturation Water Pressure“) erhöht sich und es wird angenommen, dass sich konsequenterweise auch die Wasserdampfkonzentration ∆H2O erhöht, und zwar als lineare Funktion der Temperaturänderung. (Die Temperaturänderung ist so klein, dass eine Linearisierung auf jeden Fall legitim ist):
$\Delta H_2O = j\cdot \Delta T_0 $
Dabei ist $j$ die Proportionalitätskonstante für die Wasserdampfkonzentration.
Eine erhöhte Wasserdampfkonzentration bewirkt wiederum aufgrund der Treibhauswirkung von Wasserdampf eine Temperaturerhöhung, die linear von der Wasserdampfkonzentration abhängt:
$\Delta T_1 = k\cdot \Delta H_2O $
Zusammengefaßt bewirkt also die auslösende Temperaturerhöhung ∆T0 eine Folgeerhöhung der Temperatur ∆T1:
$\Delta T_1 = j\cdot k\cdot \Delta T_0 $
Da die Voraussetzung des Verfahrens ist, dass die Ursache der auslösenden Temperaturerhöhung unerheblich ist, bewirkt die Erhöhung um ∆T1 natürlich ebenfalls wieder einen Rückkopplungszyklus:
$\Delta T_2 = j\cdot k\cdot \Delta T_1 = (j\cdot k)^2\cdot \Delta T_0$
Dies wiederholt sich rekursiv. Die finale Temperaturänderung ist demnach eine geometrische Reihe:
$\Delta T = \Delta T_0\sum_{n=0}^\infty(j\cdot k)^n = \Delta T_0\cdot \frac{1}{1-j\cdot k} $
Wäre $j\cdot k\ge 1$, würde die Reihe divergieren und die Temperatur über alle Grenzen wachsen. Daher ist es wichtig, sich über die Größe dieser beiden Rückkopplungsfaktoren Klarheit zu verschaffen.

Abhängigkeit der möglichen Wasserdampfkonzentration von der Temperatur

Die maximal mögliche Wasserdampfkonzentratio in Abhängigkeit von der Temperatur T (in °C) ist durch den Sättigungsdampfdruck SVP (englisch „saturation vapour pressure“, SVP) begrenzt. Dieser wird durch die Arden Buck Gleichung, (eine moderne, überarbeitete Version der Magnus-Formel) sehr genau beschrieben:
$ SVP = 0.61121\cdot \exp{((18.678-\frac{T}{234.5})(\frac{T}{257.14+T}))} $
Es wird hier die Standard-Atmosphäre mit 15°C Boden- bzw. Wasseroberflächentemperatur und adiabatischem Temperaturgradient von -6.5°C/km betrachtet.

Die absolute Differenz $\frac{\Delta (SVP(T))}{\Delta T}$ ist naturgemäß bei höheren Temperaturen, also in Bodennähe, am größten:

Die relative Differenz $\frac{\frac{\Delta (SVP(T))}{\Delta T}}{SVP(T)}$ wird mit zunehmender Höhe größer, bewegt sich zwischen 4% und 8%.

Die mögliche Zunahme der relativen Luftfeuchtigkeit – das Verhältnis des tatsächlichen Dampfdrucks im Vergleich zum Sättigungsdampfdrucks – als Folge der globalen Temperaturerhöhung $T_0$ ist durch diese relative Änderung des Sättigungsdampfdrucks begrenzt.

Da die mittlere, dominante Infrarot-Abstrahlung der Erde etwa in der Höhe 5000m stattfindet, und sich oberhalb davon kaum mehr Wasserdampf befindet, ist es sinnvoll, 6% als oberes Limit der Änderung der relativen Luftfeuchtigkeit infolge einer Temperaturerhöhung um 1°C anzunehmen. Demzufolge ergibt sich die Konstante $j$ als $j=0.06$. Dieser Wert ist etwas kleiner als die üblicherweise genannten (aber gewöhnlich nicht belegten) 7%. Nach dem obigen Diagramm wären 7% Erhöhung der Luftfeuchtigkeit erst oberhalb von 8000 m ü.d.M. möglich.

Abhängigkeit des Treibhauseffekts von der Änderung der relativen Luftfeuchtigkeit

Der Infrarot Strahlungstransport in der Atmosphäre ist von der relativen Luftfeuchtigkeit abhängig. Dies wird in dem bekannten und bewährten Simulationsprogram MODTRAN berücksichtigt. Mit zunehmender Luftfeuchtigkeit sinkt infolge des Treibhauseffektes des Wasserdampfes die ausgehende Infrarotstrahlung.

Zwischen der Luftfeuchtigkeit 60% und 100% ist die Strahlungsabnahme linear. Daher wird zur Ermittlung der Abnahme der Strahlungsleistung und der zur Kompensation notwendigen Temperaturerhöhung die Zunahme der relativen Luftfeuchtigkeit von 80% auf 86% betrachtet.

Dazu stellen wir die Parameter der MODTRAN Simulation auf

  • die aktuelle CO2-Konzentration von 420 ppm,
  • eine relative Luftfeuchtigkeit von 80%,
  • und eine Wolkenkonstellation, die der mittleren IR Abstrahlungsleistung von 240 $\frac{W}{m^2}$ nahe kommt.

Der Temperatur-Offset wird nun so lange vergrößert, bis die reduzierte iR-Abstrahlung von 0.6 \frac{W}{m^2} durch Temperaturerhöhung wieder ausgeglichen ist. Dies ist bei einer Erhöhung der Bodentemperatur um 0.185 °C der Fall.

Eine 6% höhere relative Luftfeuchtigkeit bewirkt also einen Treibhauseffekt, der durch eine Temperaturerhöhung von 0.185°C ausgeglichen wird, Auf eine Änderung um (theoretische) 100% Luftfeuchtigkeit hochgerechnet sind das $k=3.08$°C/100% .

Der finale Rückkopplungsfaktor und der gesamte Treibhauseffekt

Damit bewirkt eine um 1 Grad höhere Temperatur in einem Rückkopplungszyklus eine zusätzliche Temperaturerhöhung um $k\cdot j = 0.06*3.08= 0.185$.

Die geometrische Reihe führt zu einem Verstärkungsfaktor $f$ des reinen CO$_2$ Treibhauseffekts um
$f=\frac{1}{1-0.185} = 1.23 $

Damit ist die um die Wasserdampfrückkopplung verstärkte Sensitivität bei Verdopplung der CO$_2$ Konzentration $\Delta T$ nicht mehr $\Delta T_0=0.8$°C, sondern
$\Delta T = 1.23\cdot 0.8$ °C = 0.98°C $\approx$ 1°C

Würde man die vom „Mainstream“ postulierten 7% maximaler Erhöhung der Luftfeuchtigkeit zugrunde legen, wäre die zusätzliche Temperaturerhöhung 0.215 °C und demzufolge die Verstärkung des Treibhauseffekts
$f=\frac{1}{1-0.215} = 1.27 $. Die Sensitivität für CO$_2$ Verdoppelung wäre dann
$\Delta T = 1.27\cdot 0.8$ °C = 1.02°C $\approx$ 1°C

Dieses Ergebnis berücksichtigt nicht die um die durch höhere Wasserdampfkonzentration stärkere Wolkenbildung und deren Abschirmung des einfallenden Sonnenlichts, die eine negative Rückkopplung bewirkt.




Der adiabatische Temperaturgradient – vereinfachte Herleitung


[latexpage]

Die atmosphärische Temperatur variiert mit der Höhe. Dieses wohlbekannte und gut verstandene Phänomen wird als Adiabatischer Temperaturgradient bezeichnet. Dieser beschreibt den Temperaturgradienten in der Höhe und besagt im Wesentlichen, dass die Temperatur pro km Höhe um 4-9,8 Grad Celsius abnimmt. Der Grund für die Erörterung dieses Phänomens ist, dass der vertikale Temperaturgradient oft fälschlicherweise einem strahlungsbedingten „Treibhauseffekt“ zugeschrieben wird, obwohl er in Wirklichkeit die natürliche thermodynamische Folge eines Gasvolumens in einem Gravitationsfeld ist. Da es sich um einen adiabatischen Effekt handelt, ist keine Änderung des Gesamtenergiegehalts beteiligt.
Es gibt viele Möglichkeiten, dieses Phänomen zu erklären. Hier möchte ich es auf die elementarste Weise tun.

Die erste wichtige Annahme ist das lokale thermodynamische Gleichgewicht. Das bedeutet, dass es in einem bestimmten Luftvolumen keine makroskopischen Zustandsänderungen z. B. bei Temperatur oder Druck gibt. Nehmen wir ein Luftvolumen an, das groß genug ist, damit die Temperatur definiert werden kann, und das klein genug ist, damit die Temperatur in diesem Volumen konstant ist, typischerweise „Gaspaket“ genannt.
Dieses Volumen mit der Masse $m$ befindet sich im planetarischen Gravitationsfeld mit der Gravitationskonstante $g$. In der Höhe h hat es die potentielle Energie $$ E_p = m\cdot g\cdot h. $$ und die thermische Energie dieses Volumens mit der Wärmekapazität (bei konstantem Druck) $c_p$ und der Temperatur $T$ gegenüber der Referenztemperatur $T_0$ ist
$$ E_t = c_p\cdot m\cdot (T – T_0) $$ Die zweite Annahme ist, dass das System adiabatisch ist, d.h. es fließt keine Energie in das System hinein oder aus ihm heraus. Das bedeutet, dass die Summe $E$ von $E_p$ und $E_t$ konstant ist:
$$ E = E_p + E_t = const. $$ Die Gesamtableitung von E muss also 0 sein: $$\frac{\partial E}{\partial h}dh + \frac{\partial E}{\partial T} dT = 0 $$ $$m\cdot g \cdot dh + c_p\cdot m\cdot dT = 0 $$ Daraus folgt direkt der Temperaturgradient:
$$ \frac{dT}{dh} = – \frac{g}{c_p} $$ Was bedeutet das? Ausgehend von der Annahme der lokalen Energieerhaltung verliert ein Molekül, das sich nach oben bewegt, Bewegungsenergie im Austausch gegen potentielle Energie, muss also um den entsprechenden Energiebetrag kühler werden, d.h. das Anheben einer Masse im Gravitationsfeld muss von der Bewegungsenergie bezahlt werden, und eine fallende Masse wird beschleunigt, wodurch die Temperatur steigt. Das Gleichgewicht ist erreicht, wenn die Entropie des Systems maximal ist.
Mit $g=9,81 \frac{m}{s^2}$ und $c_p = 1,012 \frac{J}{g\cdot °K} $ beträgt der adiabatische Temperaturgradient für trockene Luft $$ \Gamma = -\frac{9,81}{1,012} \frac{°K}{km} = -9.8 \frac{°K}{km} $$

Wenn die Luft feucht ist, kondensiert der Wasserdampf je nach Druck und Temperatur zu flüssigem Wasser, wobei die latente Wärme von 2260 J/g freigesetzt wird. Diese zusätzliche Kondensationsenergie verringert den Temperaturgradienten, da der „Preis“ für die potenzielle Energie (teilweise) aus der Kondensationsenergie bezahlt werden kann, ohne dass die Temperatur sinkt. Der resultierende feuchtadiabatische Temperaturgradient liegt im Bereich von -4…-9,8 °K/km, abhängig von der Luftfeuchtigkeit. Im globalen Durchschnitt beträgt der Temperaturgradient -6,4 °K/km.

Was hat der Temperaturgradient mit dem Klima oder dem Treibhauseffekt zu tun? Tatsächlich erklärt der Temperaturgradient einen Großteil, wenn nicht sogar den gesamten globalen Temperaturunterschied zwischen der Erdoberfläche und dem oberen Teil der Troposphäre, ohne dass explizite Annahmen über einen „Antrieb“ oder Treibhausgase gemacht werden (Treibhausgase sind jedoch für die Wechselwirkung mit der Infrarotstrahlung relevant). Der durch den Temperaturgradient beschriebene Zustand ist ein Gleichgewichtszustand der Atmosphäre ohne Energiefluss:

Adiabatischer Temperaturegradient in der Troposphäre

Wenn die Atmosphäre von diesem Zustand abweicht, zwingt die Thermodynamik das System stark in diese Richtung, so wie ein in einem Behälter verteiltes Gas zum Zustand gleicher Dichte tendiert. Die adiabatische Barometergleichung beschreibt den großräumigen Gleichgewichtszustand und stellt eine starke Korrelation zwischen dem Temperaturgefälle und dem Druckgefälle her. Daher wird manchmal der Begriff verwendet, dass „Druck die Temperatur verursacht“. Im Zusammenhang mit adiabatischen Bedingungen in einem Gravitationsfeld ist dies zwar nicht falsch, aber die Formulierung ist irreführend, so dass manche Leute fälschlicherweise glauben, dass statischer Druck Wärme erzeugen würde. Daher ziehe ich es vor, zur Beschreibung des Phänomens auf Grundprinzipien wie Energieerhaltung und Entropiemaximierung zu verweisen.

Das Konzept des adiabatischen Temperaturgradienten ist in der Atmosphärenforschung sehr mächtig: Im Jahr 1967 wurde die Oberflächentemperatur der Venus durch Auswertung des Temperaturgradienten korrekt bestimmt – ein expliziter Hinweis auf Treibhausgase war nicht erforderlich, obwohl implizit klar ist, dass die Infrarotstrahlung in den Weltraum von den Treibhausgasen aus der Nähe des Randes der Atmosphäre stammt. Unabhängig davon, wo das eintreffende Sonnenlicht absorbiert wird, verteilt sich die entstehende Wärme via Konvektion und Strahlung entsprechend des Temperaturgradienten.
Dies wurde kürzlich mit einer verbesserten Parametrisierung der Wärmekapazität neu berechnet.

Demzufolge handelt es sich bei der Venus keineswegs um einen „Runaway Treibhauseffekt“, die hohe Oberflächentemperatur hat ihre Ursache ich der sehr viel dickeren Atmosphäre als der der Erde, nur zu einem geringen Teil infolge der reinen CO$_2$-Atmosphäre.




Warum die wachsende CO2-Konzentration weitgehend menschengemacht ist

Häufig hören wir das Argument, dass die natürlichen Emissionen, sei es durch

  • Atmung der Pflanzen, Tiere und Menschen
  • biologische Zersetzungsprozesse
  • Ausgasung der Ozeane

so groß seien, dass die anthropogenen Emissionen im Vergleich kaum ins Gewicht fallen und quasi „im Rauschen untergehen“.

In der Tat sind die Respiration mit 130 GtC/a und die Ausgasung aus den Ozeanen mit 80 GtC/a wesentlich größer als die 9,5 GtC/a, die durch Verbrennung fossiler Energieträger und Zementproduktion zustandekommen.

Da liegt der Schluß nahe, anzunehmen, dass angesichts der großen natürlichen Umsätze von 210 GtC/a die anthropogenen Emissionen nur 5% ausmachen und daher relativ unbedeutend sind.

Dies ist aber ein Fehlschluß: Der Respiration steht ein gleichgroßer, sogar etwas größerer Betrag der Nettoprimärproduktion und der Ausgasung von 80 GtC/a ebenfalls ein leicht größerer Betrag der Absorption in den Ozeanen gegenüber.

Zwei einfache Tatsachen helfen, die Frage zu klären:

  1. Die jährlichen anthropogenen Emissionen sind deutlich größer als der Anstieg der CO2-Konzentration. Das heißt, dass es auf jeden Fall mehr Emissions-CO2 gibt als was von der der Atmosphäre aufgenommen wird. Die „restlichen“ Einflußfaktoren müssen demnach zwingend in ihrer Gesamtwirkung eine Kohlenstoffsenke sein – so stark, dass sie heute bereits mehr als die Hälfte des anthropogen erzeugten CO2 aufnehmen.
  2. In der Jahresbilanz sind sowohl die Ozeane als auch die Landpflanzen und mit ihnen die gesamte biologische Welt seit 100 Jahren strikte Kohlenstoffsenken sind, sie nehmen übers Jahr gemittelt jeweils mehr als 2 Gt/a mehr Kohlenstoff auf als sie abgeben.

Das folgende Diagramm zeigt sowohl die anthropenen Emissionen einschließlich Landnutzungsänderungen (Abholzung) als positive Beiträge während die „Verwendung“ dieser Emissionen als Verteilung nach Ozeanen, Landpflanzen und Anstieg der atmosphärischen Konzentration dargestellt ist:

Entscheidend ist, dass die unterjährigen natürlichen Austauschprozesse sich gegenseitig aufheben und nichts zum Anstieg der CO2-Konzentration beitragen, obwohl die beteiligten Mengen sehr viel größer als die anthropogenen Emissionen sind. Die Unterscheidung der Aufenthaltszeit und Ausgleichszeit hat Cawley in einer wissenschaftlichen Publikation vorgenommen. Hier möchte ich mich auf eine anschauliche vereinfachte Argumentation beschränken:

Eine Senke kann nicht gleichzeitig Quelle sein. Auch wenn es jahreszeitliche Schwankungen gibt, entscheidend ist die Bilanz am Ende des Jahres – wie bei einem Bankkonto. Darüber hinaus sind die Schwankungen der Art, dass die verstärkte Senkenwirkung aufgrund des Pflanzenwachstums im Frühjahr und Sommer stets dem folgenden Abbau und Zerfall vorausgeht. Die biologische Welt ist aus prinzipiellen Gründen immer eine Netto-Senke.

Die Ozeane kann man als riesige Kohlenstoff-Speicher mit der etwa 50 fachen Kapazität der Atmosphäre auffassen, die auf lange Sicht die CO2-Konzentration derjenigen der Atmosphäre „angleichen“, unter korrekter Berücksichtigung der nicht ganz trivialen physikalischen und chemischen Prozesse. Wir können davon ausgehen, dass bislang die Ozeane auf die vorindustrielle CO2-Konzentration von etwa 280 ppm angepasst sind und daher noch für sehr lange Zeit als effektive Senke wirken.

Daher müssen wir die Tatsache akzeptieren, dass die menschlichen Aktivitäten tatsächlich in den letzten 150 Jahren tatsächlich für ein Anwachsen der CO2-Konzentration um 50% gesorgt haben. An anderer Stelle wird der genaue Mechanismus der Abhängigkeit der Konzentration von den anthropogenen Emissionen behandelt. Damit ist allerdings noch nichts darüber gesagt, ob die Auswirkungen der erhöhten Konzentration eher nützlich oder schädlich sind.

Nachtrag 2.6.2024 — Kleine Einschränkung

Aufgrund neuerer Recherchen lässt sich ein Einfluss der globalen mittleren Wasseroberflächentemperatur auf die CO$_2$-Konzentration nachweisen. Da nicht die Konzentration mit den Temperaturschwankungen korreliert ist, sondern die natürlichen Emissionen, ist die Kausalität so, dass die Temperaturschwankungen zu Emissions- und schließlich zu Konzentrationsänderungen führen. Der definitive Nachweis bezieht sich bislang auf die Temperaturschwankungen, die vom langfristigen Trend abweichen, sowie auf die Daten der Eisbohrkerne aus der Antarktis. Der langfristige Einfluß der Temperatur auf die CO$_2$ Gleichgewichtskonzentration dürfte bei 13 ppm/°C liegen, also bei knapp 10% des CO$_2$ Konzentrationsanstiegs seit dem Beginn der Industrialisierung. Maximal möglich sind 65 ppm/°C. Das wäre dann schon fast die Hälfte.




Emissionen des Kohlenstoffkreislaufs

In der Klimadiskussion wird zunehmend der sog. „CO2-Fußabdruck“ von Lebewesen, insbesondere des Menschen und von Nutztieren als Problem deklariert, bis dahin,

  • das Essen von Fleisch zu diskreditieren,
  • Nutztiere abzuschlachten (z.B. in Irland)
  • oder sogar junge Menschen davon abzuhalten, Kinder zu bekommen.

Diese Diskussion beruht auf falschen Voraussetzungen. Es wird so getan, als ob das Ausatmen von CO2 dieselbe „klimaschädliche“ Qualität hätte wie das Verbrennen von Kohle oder Erdöl.
Eine genauere Analyse des Kohlenstoffkreislaufs zeigt den Unterschied.

Der Kohlenstoffkreislauf

Alles Leben der Erde ist aus Kohlenstoffverbindungen aufgebaut.
Der Beginn der sogenannten Nahrungskette sind die Pflanzen, die mit der Photosynthese aus dem CO2 der Atmosphäre vorwiegend Kohlehydrate, teilweise auch Fette und Öle erzeugen und damit sowohl Kohlenstoff als auch Energie speichern.

Die weitere Verarbeitung dieser Kohlenstoffverbindungen teilt sich auf mehrere Zweige auf, bei denen wieder eine Umwandlung in CO2 erfolgt:

  • der unmittelbare Energieverbrauch der Pflanze, die „pflanzliche Atmung“,
  • der — überwiegend saisonale — Zerfall eines Teils oder der ganzen Pflanze, und Humusbildung,
  • der Energieversorgung von Tieren und Menschen als Nahrung. Hier findet außer der direkten Energieversorgung eine Umwandlung in Eiweiße und Fette statt, zum Teil auch in Kalk.
  • Mit der Nahrungskette werden die Eiweiße und Fette weitergereicht.
  • Im Laufe des Lebens geben Pflanzen, Tiere und Menschen einen Teil des über die Nahrung aufgenommenen Kohlenstoffs durch Atmung wieder als CO2, teilweise auch als Methan ab.
  • Mit der Verwesung der Tiere und Menschen wird über Zersetzungsprozesse teilweise das verbliebene CO2 wieder freigesetzt, teilweise bildet sich Humus, der kohlenstoffhaltig ist.
  • Der biologisch gebildete Kalk bindet das CO2 langfristig. Z.B. bindet jede Eierschale 5g CO2 für sehr lange Zeit.

Menschen und Tiere sind CO2 Senken, keine Quellen

Vielfach wird gesagt, dass Menschen und Tiere über Atmung etc. Kohlenstoff als CO2 oder Methan in die Atmosphäre geben, und daher zu die Emissionen vergrößern. Um zu zeigen, dass sie zusammen mit ihrer Nahrungskette dennoch CO2-Senken sind, wollen wir den als CO2 oder Methan ausgeschiedenen Kohlenstoff zurückverfolgen.
Dieser kommt entweder direkt über den Stoffwechsel aus der aufgenommenen Nahrung, oder aus den Fettreserven des eigenen Organismus. Die Fettreserven wiederum stammen aus der Nahrung, die in der Vergangenheit aufgenommen wurde.
Nun stammt alle Nahrung — mit Ausnahme von Medikamenten — aus Tieren oder Pflanzen. Tiere ernähren sich wiederum von Tieren oder Pflanzen. Am Ende der Nahrungskette stehen in jedem Falle Pflanzen. Diese holen sich all ihren Kohlenstoff aus dem CO2 der Atmosphäre.

Das heißt, dass jedes Kohlenstoffatom, dass wir als CO2 ausatmen, je nach Länge der Nahrungskette ursprünglich und daher vorher aus dem CO2 der Atmosphäre stammt und gebundenen worden war. Daher stammt sämtlicher Kohlenstoff aller Lebewesen, sei er gebunden oder als CO2 ausgeatmet, letztendlich aus der Atmosphäre über die Photosynthese. Das wird sehr anschaulich vom berühmten Nobelpreisträger Prof. Richard Feynman am Beispiel eines Baumes beschrieben (in englischer Sprache):

Alle Lebewesen sind temporäre Speicher des CO2. Die geschilderten Mechanismen bewirken unterschiedliche Halbwertszeiten dieser Speicherung.

Die Eingriffe des Menschen bewirken in der Regel eine Verlängerung der Speicherung und damit in der Konsequenz ein nachhaltigerer Umgang mit CO2:

  • Hauptsächlich durch Konservierung und damit Aufhalten der Fäulnisprozesse. Das bezieht sich nicht nur auf das haltbar machen von Lebensmitteln, sondern auch durch langfristige Konservierung von Holz, solange die Holzverwertung nachhaltig ist. Auf diese Weise ist das Bauen mit Holz eine langfristige Bindung von CO2.
  • Das Getreide vom letzten Jahr wird i.d.R. gelagert und erst etwa ein Jahr später zu Brot etc. weiterverarbeitet. In der Zwischenzeit sind die diesjährigen Getreidepflanzen schon wieder nachgewachsen. Damit sind die stoffwechselbedingten Emissionen von Mensch und Tier schon kompensiert, bevor sie stattfinden. Würde das Getreide ohne Verarbeitung verrotten, dann wäre es bereits im Herbst letzten Jahres wieder in CO2 zerfallen. Würde gar kein Getreide angebaut, würde von vorneherein sehr viel weniger CO2 der Luft gebunden. Es ist nachgewiesen, dass die Intensivierung der Landwirtschaft neben der gestiegenen CO2-Konzentration in der Atmosphäre maßgeblich zum Ergrünen der Erde seit 30 Jahren beigetragen hat, u.a. in Form von sich jährlich steigernden Spitzenernten.
  • Auch die Aufzucht von Nutztieren bedeutet eine CO2-Speicherung, nicht nur in Form der langlebigen Knochen. Die Nutztiere spielen auch eine wichtige Rolle bei der wichtigen Beseitigung von Graspflanzen (siehe weiter unten).

Einschränkung – Düngung und Mechanisierung der Landwirtschaft

3 Faktoren führen dazu, dass bei der Erzeugung von Lebensmitteln u.U. doch mehr CO2 freigesetzt wird als in der „freien Natur“, nämlich wenn Prozesse beteiligt sind, bei denen fossile Brennstoffe zum Einsatz kommen:

  • Die Verwendung von chemisch erzeugten Düngemitteln
  • die Mechanisierung der Landwirtschaft
  • die Industrialisierung der Lebensmittelerzeugung.

Aufgrund sehr unterschiedlicher Erzeugungsprozesse ist es sehr irreführend, von einem produktspezifischen CO2-Fußabdruck zu sprechen.

Um ein wichtiges Beispiel herauszugreifen: Rindfleisch wird gewöhnlich mit einem extrem hohen „CO2-Fußabdruck“ versehen. Das Rindfleisch, das von Rindern stammt, die weitgehend auf einer — ohne Kunstdünger gedüngten — Weide großgezogen werden, hat einen vernachlässigbar kleinen „CO2-Fußabdruck“, im Gegensatz zu dem, was in den üblichen Tabellen verbreitet wird. Dasselbe gilt für Wildtiere, die bei der Jagd erlegt werden.

Ein Beispiel, das die Doppelzüngigkeit der Diskussion illustriert, ist die Erzeugung von Bio-Treibstoffen. Dabei werden ganz genauso wie bei der übrigen Landwirtschaft Düngemittel und mit fossiler Energie betriebene mechanische Geräte eingesetzt. Die erzeugten Treibstoffe gelten jedoch als nachhaltig und „CO2-frei“. Derselbe Maßstab muß auch für die Erzeugung von Lebensmitteln gelten.

Bei der Düngung ist noch zu berücksichtigen, dass gedüngte Pflanzen sehr viel besser wachsen und daher auch mehr CO2 aus der Luft absorbieren. Das heißt, dass ein großer Teil des durch Düngung bedingten „Fußabdrucks“ durch das verbesserte Wachstum der Pflanze und daher erhöhte Photosynthese-Tätigkeit wieder kompensiert wird.

Abhängigkeiten

Die wichtigste Erkenntnis aus Biologie und Ökologie ist, dass es nicht in unserer Beliebigkeit ist, einzelne Elemente der sensiblen Ökologie zu entfernen, ohne dem Ganzen großen Schaden zuzufügen.
Typische Beispiele solch schädlicher Einflüsse sind:

  • Überweidung, d.h. Verödung durch Abfressen der (pflanzlichen) Lebensgrundlagen. Beispiele dafür sind weithin bekannt. Die „Überweidung“ kann auch durch „gut gemeinte“ und als positiv angenommene Eingriffe wie die „Verbesserung der Wasserqualität“ im Bodensee erfolgen, mit dem Ergebnis, dass es für Pflanzen und Tiere im Wasser nicht mehr genug Nahrung gibt.
  • Weniger bekannt ist die „Unterweidung„, insbesondere das Nicht-Beseitigen von verdorrtem Steppengras in den riesigen semiariden Gebieten der Erde. Zur Lösung dieses Problems hat Alan Savory das Konzept des „Holistic Managements“ mit großem Erfolg eingeführt. Dieses Konzept beinhaltet als wesentliche Komponente die Ausweitung der Viehzucht.
    Werden Pflanzen nicht durch „größere“ Tiere weiterverwertet, dann werden sie von Mikroorganismen verarbeitet und zerfallen in der Regel schnell wieder unter Freisetzung des gebundenen CO2, teilweise werden sie in Humus umgewandelt. Für die CO2-Konzentration der Atmosphäre ist also nichts gewonnen, wenn z.B. Rinder oder Schweine abgeschlachtet werden, um angeblich die CO2-Bilanz zu verbessern. Im Gegenteil, die Tiere verlängern die Lebensdauer der organischen kohlenstoffbindenden Substanz.
Abhängigkeit des Pflanzenwachstums vom CO2

Pflanzen gedeihen besser, je höher die CO2-Konzentration der Atmosphäre ist, insbesondere die C3-Pflanzen:

Für das Wachstum der Pflanzen war der Anstieg der CO2-Konzentration der letzten 40 Jahre ausgesprochen günstig, die Welt ist signifikant grüner geworden, mit dem Nebeneffekt der Senkenwirkung, also Aufnahme des zusätzlichen anthropogenen CO2:

Die C3-Pflanzen erreichen erst bei einer Konzentration von 800 ppm dieselbe Aufnahme von CO2 wie C4 Pflanzen. Darum werden vielen Gewächshäuser mit CO2 angereichert.

Schlußfolgerungen

Mit dem Wissen um diese Zusammenhänge ergeben sich zwingende Schlussfolgerungen:

  1. Aufgrund des Primats der Photosynthese und die Abhängigkeit allen Lebens davon ist die Gesamtheit der Lebewesen eine CO2-Senke, mittel- und langfristig kann also die CO2-Konzentration aufgrund des Einflusses der Lebewesen nur abnehmen, niemals zunehmen.
  2. Dabei hängt die photosynthetische Aktivität und daher auch die Senkenwirkung stark von der CO2-Konzentration ab. Je größer die CO2-Konzentration, desto größer ist die Senkenwirkung aufgrund des CO2-Düngungs-Effekts, vorausgesetzt die Pflanze bekommt genug Wasser und Licht und ggf. den notwendigen Dünger.
  3. Alle Lebewesen sind CO2-Speicher, mit unterschiedlichen Speicherzeiten.
  4. Es gibt mindesten 3 Formen langfristiger CO2-Bindung gibt, die zur Abnahme der CO2-Konzentration führen:

    • Kalkbildung
    • Humusbildung
    • nichtenergetische Holznutzung

  5. Der Einsatz von „technischen Hilfsmitteln“, die fossile Energie verbrauchen, muss bei den Betrachtungen getrennt werden von dem natürlichen Kohlenstoffkreislauf. Man kann also nicht sagen, ein bestimmtes Lebensmittel hat einen festen „CO2-Fußabdruck“. Der hängt einzig und allein von der Produktionsweise und der Tierhaltung ab.
    Eine „faire“ Betrachtung muss hier genauso wie z.B. bei Elektrofahrzeugen annehmen, dass die technischen Hilfsmittel der Zukunft oder die Herstellung von Düngemitteln nachhaltig sind.

Dazu kommt, dass unter Berücksichtigung des Wissens, dass mehr als die Hälfte der aktuellen anthropogenen Emissionen im Laufe des Jahres wieder absorbiert werden, führt bereits eine 45% Senkung der aktuellen Emissionen zu der „Netto-Null“ Situation, wo die atmosphärische Konzentration nicht mehr zunimmt. Selbst wenn wir die weltweiten Emissionen nur wenig ändern (was angesichts der energiepolitischen Entscheidungen in China und Indien sehr wahrscheinlich ist), wird noch in diesem Jahrhundert eine Gleichgewichtskonzentration von 475 ppm erreicht, die keinen Grund zur Beunruhigung gibt.




Vorhersagen der globalen Temperatur


[latexpage]

Der traditionelle Ansatz wird in Frage gestellt

Die Schlüsselfrage zum Klimawandel ist Wie stark beeinflusst der $CO_2$-Gehalt der Atmosphäre die globale Durchschnittstemperatur? Und insbesondere, wie empfindlich reagiert die Temperatur auf Veränderungen der $CO_2$-Konzentration?
Wir untersuchen dies anhand von zwei Datensätzen, dem HadCRUT4-Datensatz zur globalen Durchschnittstemperatur und dem CMIP6-Datensatz zum $CO_2$-Gehalt.
Die Korrelation zwischen diesen Daten ist ziemlich hoch, so dass es ziemlich offensichtlich erscheint, dass ein steigender $CO_2$-Gehalt steigende Temperaturen verursacht.
Mit einem linearen Modell scheint es einfach herauszufinden, wie genau die Temperaturen im Jahr i $T_i$ durch den $CO_2$-Gehalt $C_i$ und das zufällige (Gauß’sche) Rauschen $\epsilon_i$ vorhergesagt werden. Aus theoretischen Überlegungen (Strahlungsantrieb) ist es wahrscheinlich, dass das Modell mit $log(C_i)$ am besten passt:
$T_i = a + b\cdot log(C_i) + \epsilon_i$
Die Konstanten a und b werden durch eine Anpassung mit der Methode der kleinsten Quadrate bestimmt (mit dem Python-Modul OLS aus dem Paket statsmodels.regression.linear_model):
a=-16,1, b=2,78
Daraus lässt sich die Sensitivität bestimmen, die als Temperaturdifferenz bei Verdopplung von $CO_2$ definiert ist:
$\Delta(T) = b\cdot log (2)$ °C = 1,93 °C
Das sind fast 2 °C, eine Zahl, die nahe an den offiziellen Schätzungen des IPCC liegt.

Was ist daran falsch, es scheint sehr einfach und logisch zu sein?
Wir haben das Residuum der Anpassung mit der Methode der kleinsten Quadrate noch nicht untersucht. Unser Modell besagt, dass das Residuum Gaußsches Rauschen sein muss, d.h. unkorreliert.
Der statistische Test, um dies zu messen, ist der Ljung-Box-Test. Betrachtet man das Q-Kriterium, so ist es Q = 184 mit p=0. Das bedeutet, dass der Residuum signifikante Korrelationen aufweist, es gibt strukturelle Informationen im Residuum, die mit dem vorgeschlagenen linearen Modell des log($CO_2$)-Gehalts nicht erfasst wurden. Ein Blick auf das Diagramm, das die angepasste Kurve zeigt, lässt erahnen, warum der statistische Test fehlgeschlagen ist:

Wir sehen 3 Diagramme:

  • Die gemessenen Temperaturanomalien (blau),
  • die geglätteten Temperaturanomalien (orange),
  • die Rekonstruktion der Temperaturanomalien basierend auf dem Modell (grün)

Während das Modell im Vergleich zu den verrauschten Originaldaten vernünftig aussieht, ist es aus den geglätteten Daten offensichtlich, dass es neben $CO_2$ noch andere systematische Gründe für Temperaturänderungen geben muss, die vorübergehende Temperaturrückgänge wie während 1880-1910 oder 1950-1976 verursachen. Am überraschendsten ist, dass von 1977-2000 der Temperaturanstieg deutlich größer ist, als es das Modell des $CO_2$-Anstiegs erwarten ließe.

Die systematischen Modellabweichungen, u.a. ein 60-jähriges zyklisches Muster, sind auch zu beobachten, wenn man sich die Residuen der kleinsten Quadrate Schätzung anschaut:

Erweiterung des Modells mit einer einfachen Annahme

Angesichts der Tatsache, dass die Ozeane und bis zu einem gewissen Grad auch die Biosphäre enorme Wärmespeicher sind, die Wärme aufnehmen und wieder abgeben können, erweitern wir das Temperaturmodell um einen Speicherterm der Vergangenheit. Ohne den genauen Mechanismus zu kennen, können wir auf diese Weise die „natürliche Variabilität“ in das Modell einbeziehen. Vereinfacht ausgedrückt entspricht dies der Annahme: Die Temperatur in diesem Jahr ist ähnlich wie die Temperatur des letzten Jahres. Mathematisch wird dies durch einen erweiterten autoregressiven Prozess ARX(n) modelliert, wobei angenommen wird, dass die Temperatur im Jahr i eine Summe von

  • einer linearen Funktion des Logarithmus des $CO_2$-Gehalts,log($C_i$), mit Offset a und Steigung b,
  • einer gewichteten Summe der Temperatur der Vorjahre,
  • zufälligem (Gauß’schem) Rauschen $\epsilon_i$

$ T_i = a + b\cdot log(C_i) + \sum_{k=1}^{n} c_k \cdot T_{i-k} +\epsilon_i $

Im einfachsten Fall ARX(1) erhalten wir

$ T_i = a + b\cdot log(C_i) + c_1\cdot T_{i-1} +\epsilon_i $

Mit den gegebenen Daten werden die Parameter geschätzt, wiederum mit dem Python-Modul OLS aus dem Paket statsmodels.regression.linear_model:
$a=-7.33, b=1.27, c_1=0.56 $
Die Rekonstruktion des Trainingsdatensatzes ist deutlich näher an den Originaldaten:

Das Residuum der Modellanpassung sieht nun viel mehr wie ein Zufallsprozess aus, was durch den Ljung-Box-Test mit Q=20,0 und p=0,22 bestätigt wird

Bei Berücksichtigung der natürlichen Variabilität reduziert sich die Empfindlichkeit gegenüber $CO_2$ auf
$\Delta(T) = b\cdot log (2) °C = 0,88 °C $

In einem anderen Beitrag haben wir die Abhängigkeit des atmosphärischen $CO_2$-Gehalts von den anthropogenen $CO_2$-Emissionen untersucht, und dies als Modell für Vorhersagen des zukünftigen atmosphärischen $CO_2$-Gehalts verwendet. Es werden u.a. 3 Szenarien untersucht:

  • „Business as usual“ neu definiert anhand der neuesten Emissionsdaten als Einfrieren der globalen $CO_2$-Emissionen auf das Niveau von 2019 (was auch tatsächlich geschieht)
  • 100% weltweite Dekarbonisierung bis 2050
  • 50% weltweite Dekarbonisierung bis 2100
  • 50% weltweite Dekarbonisierung bis 2050
  • sofortige 50% weltweite Dekarbonisierung (hypothetisch)

Das resultierende atmosphärische $CO_2$ wurde wie folgt berechnet, die statistischen Fehler sind so klein, dass die Prognose für die nächsten 200 Jahre sehr enge Fehlerintervalle aufweist.

Füttert man das Temperatur-ARX(1)-Modell mit diesen vorhergesagten Zeitreihen des $CO_2$-Gehalts, so sind für die Zukunft folgende globale Temperaturentwicklungen zu erwarten:

Schlussfolgerungen

Die folgenden Schlussfolgerungen werden unter der Annahme gezogen, dass es tatsächlich eine starke Abhängigkeit der globalen Temperatur vom atmosphärischen $CO_2$-Gehalt gibt. Ich bin mir bewusst, dass dies umstritten ist, und ich selbst habe an anderer Stelle argumentiert, dass die $CO_2$-Sensitivität bei nur 0,5°C liegt und dass der Einfluss der Wolkenalbedo viel größer ist als der von $CO_2$. Dennoch lohnt es sich, die Mainstream-Annahmen ernst zu nehmen und einen Blick auf das Ergebnis zu werfen.

Unter dem„business as usual“-Szenario, d.h. konstante $CO_2$-Emissionen auf dem Niveau von 2019, ist bis 2150 mit einem weiteren Temperaturanstieg um ca. 0,5°C zu rechnen. Das sind 1,4°C über dem vorindustriellen Niveau und damit unter der 1,5° C-Marke des Pariser Klimaabkommens.
Viel wahrscheinlicher und realistischer ist das Szenario „50%ige Dekarbonisierung bis 2100“ mit einem weiteren Anstieg um 0,25°C, gefolgt von einem Rückgang auf das heutige Temperaturniveau.

Die politisch propagierte „100%ige Dekarbonisierung bis 2050“, die nicht nur ohne wirtschaftlichen Zusammenbruch der meisten Industrieländer völlig undurchführbar ist, bringt uns zurück auf das kalte vorindustrielle Temperaturniveau, was nicht wünschenswert ist.




Temperatur-Manipulationen?

Eine aussagekräftige Datenanalyse hängt entscheidend von der Verfügbarkeit zuverlässiger Daten ab. Historisch gesehen ist es von größter Bedeutung, möglichst genaue Temperaturdaten zu haben, da diese einer der wesentlichen Prädiktoren für das zu erwartende Wetter sind. Auch die Langzeitbeobachtung von Klima und Klimatrends erfordert Temperaturdaten von höchster Qualität.

Was wäre, wenn Menschen und Institutionen anfangen würden, solche Daten zu verfälschen, weil die Daten, wie sie tatsächlich sind, nicht zu einer bestimmten politischen Agenda passen? Das würde – zumindest teilweise – die Schlussfolgerungen, die wir aus diesen Messungen ziehen, ungültig machen.

Leider sind genau solche vorsätzlichen Manipulationen von Temperaturdaten tatsächlich passiert. Einer der Meilensteine der Ereignisse ist eine Publikation von James Hansen „GISS analysis of surface temperature change“. In diesem Beitrag beschreibt Hansen eine Reihe von anscheinend notwendigen Anpassungen, die – in angeblich seltenen Fällen – an den Temperaturdaten vorgenommen werden müssen, um die Mittelung der Temperaturanomalien konsistent zu machen:

  • Die häufigste Anpassung ist die Korrektur für den städtischen Wärmeinseleffekt. Dieser ist typischerweise eine Folge des städtischen Wachstums: Früher befand sich das Thermometer außerhalb einer Stadt in einer grünen Umgebung, mit dem Wachstum der Stadt ist es nun von Häusern umgeben und unterliegt dem städtischen Wärmeeffekt, der die Temperatur ansteigen lässt. Um dies mit der vorherigen Messung in Einklang zu bringen, werden entweder die vergangenen Temperaturen angehoben oder die zukünftigen Temperaturen abgesenkt. In der Regel ist es einfacher, die vergangene Temperatur anzupassen, indem man so tut, als wäre die Stadt immer so groß gewesen wie heute. Es ist fraglich, ob eine solche Anpassung gerechtfertigt ist, oder ob es nicht klüger wäre, den städtischen Wärmeeffekt stehen zu lassen und explizit zu verfolgen und dafür geschichtliche Tatsachen anzuerkennen, indem die tatsächlichen Messungen der Vergangenheit nicht verändert werden. Tatsache ist, dass eine Veränderung der vergangenen Temperaturen auch die damalige globale Mitteltemperatur verändert, was unter keinen Umständen gerechtfertigt ist.
  • Eine zweite – eher verständliche – Situation zur Anpassung von Temperaturdaten tritt auf, wenn ein Thermometerstandort in eine größere oder geringere Höhe verlegt wird. Z.B. bei einer Höhenveränderung von 160m nach unten würde dies einer Temperaturerhöhung der bisherigen Daten um 1° C entsprechen, bei einem von Hansen angenommenen adiabatischen Temperaturgradienten von -6°/km . Physikalisch bedeutet dies die Invarianz der Potentialtemperatur, wenn der Energiegehalt des Gesamtsystems nicht verändert wird. Meinem Verständnis nach ist das die einzige legitime Anpassung nach Temperaturmessungen, weil sie den ursprünglichen wahren Messwert nicht verändert, sondern ihn lediglich auf einen anderen Ort abbildet, an dem vorher nicht gemessen wurde. Besser wäre allerdings eine zeitliche Abgrenzung der Thermometer-Gültigkeit ohne eine explizite Anpassung, wie es in anderen Gebieten der Datenverarbeitung selbstverständlich ist.
    Die Transformation und Interpolation der Daten wäre dann ggf. bei der Auswertung durchzuführen. Dort findet ohnehin eine Interpretation der Daten statt, die bei seriösen Publikationen eine nachvollziehbare Rechtfertigung jedes Verarbeitungsschrittes beinhaltet.

Beide diese Anpassungen wurden in Hansens Arbeit erwähnt und begründet. Anzumerken ist, dass der dominante Fall der städtischen Wärmeinseln zu einem Anstieg der vergangenen Temperaturen oder zu einem Rückgang der aktuellen und zukünftigen Temperaturen führen muss (wenn man von dem in Zeiten starken Bevölkerungswachstums sehr seltenen Fall absieht, dass eine Stadt verlassen wird und vollständig verfällt).

Die Zeitreihen der US-Mitteltemperaturen hat Hansen auf S. 47 seines Papiers veröffentlicht (unten links auf der Seite):

Es ist deutlich zu erkennen, dass die 3 höchsten Temperaturen im 20. Jahrhundert in den Jahren 1934, 1921 und 1931 lagen. Auch der gleitende Durchschnitt hat seinen Höhepunkt eindeutig in den frühen 1930er Jahren, und einen Abwärtstrend von den 30er Jahren bis zum Ende des Jahrhunderts.

Wenn wir uns die heutigen Temperaturdaten ansehen, die online von NOAA verfügbar sind, sind wir überrascht, dies zu sehen:

Wenn man sich das Diagramm genau ansieht, kann man beobachten, dass die Temperatur von 1998 jetzt größer ist als die zuvor größte Temperatur von 1934, eine Erhöhung um fast ein halbes Grad Celsius! Eine Reihe der späteren Temperaturen des 20. Jahrhunderts wurden ebenfalls erhöht, während die früheren Daten des 20. Jahrhunderts reduziert wurden. Das ist genau das Gegenteil von dem, was man von einer Korrektur des städtischen Wärmeinsel-Effekts erwarten würde.

Durch ein Video von Tony Heller bin ich auf diese Problematik, die nach meinem Verständnis nur als vorsätzliche Manipulation gedeutet werden kann, aufmerksam geworden.

Detailierte Datenanalyse von Prof. Friedrich Ewert

Dass die Temperaturdaten der NASA/NOAA manipuliert wurden, hat Prof. Friedrich Ewert in einer langwierigen Analyse nachgewiesen. Demnach sind viele Temperaturdaten von vor 2010 nach dem Jahre 2012 verändert. Mit den heutigen Datensätzen sind die Originaldaten von vor 2010 nicht mehr zu finden. Prof. Ewert konnte die Vergleiche anstellen, weil er die früheren Datensätze rechtzeitig archiviert hatte.

Die Manipulationen beziehen sich nicht nur auf US-Temperaturdaten, sondern auch auf Daten anderer Länder. Für die 120 zufällig ausgewählten Stationen erfasste Ewert die zehntausenden von Einzeldaten, die die NASA für jedes Jahr vor und nach 2010 angibt. Würde man seine Daten ausdrucken, ergäbe sich eine 6 Meter lange Liste. Es ist zu erkennen, dass zehn verschiedene Methoden verwendet wurden, um einen Trend zur Klimaerwärmung zu erzeugen. Sie sind alle in der Studie mit Beispielen dokumentiert. 6 der 10 Beispiele wurden am häufigsten angewendet (Prof Ewert unterteilt den gesamten Zeitraum in aufeinanderfolgende Warm- und Abkühlungsphasen):

  • Eine Absenkung der Jahresmittelwerte in der Anfangsphase.
  • Eine Verringerung einzelner höherer Werte in der ersten Warmphase.
  • Eine Erhöhung einzelner Werte in der zweiten Warmphase.
  • Eine Unterdrückung der zweiten Abkühlungsphase ab etwa 1995.
  • Eine Verkürzung der Datenreihen um die früheren Jahrzehnte.
  • Bei Langzeitreihen wurden die Datenreihen sogar um die frühen Jahrhunderte verkürzt.

Die Climategate Emails

Die durchgesickerten „Climategate Emails“, die 2009 öffentlich wurden, liefern weitere Beweise dafür, dass die absichtliche Manipulation von Temperaturdaten keine Verschwörungstheorie, sondern eine echte Verschwörung zwischen mehreren Institutionen und Personen zumindest aus den USA und Großbritannien war, sorgfältig untersucht von Stephen McIntyre und Ross McKitrick, die bereits 2009 in ihrem Paper „Proxy inconsistency and other problems in millennial paleoclimate reconstructions“ die Täuschung des „Hockeysticks“ von Michael Mann entlarvten und aufdeckten.

Das berühmteste Beispiel für die absichtliche Temperaturmanipulation wurde von Phil Jones vom britischen Met Office in einer E-Mail an Michael Mann und Keith Briffa geäußert:

„Ich habe gerade Mikes Trick aus Nature angewandt, indem ich die realen Temperaturen zu jeder Reihe für die letzten 20 Jahre (d.h. ab 1981) und ab 1961 für die von Keith hinzugezählt habe, um den Rückgang zu verbergen.“

Hier das Diagramm aus dem zitierten Dossier von Stephen McIntyre und Ross McKitrick:

Absenkung der Temperatur von 2016

2016 war ein sehr heißes Jahr, und bislang das im globalen Durchschnitt das heißeste Jahr der jüngeren Vergangenheit. Die darauf folgenden Jahre waren deutlich kühler. Das Jahr 2020 war dann im globalen Durchschnitt fast so heiß wie das Jahr 2016. Um eines neuen Superlatives willen änderte die NASA im Nachhinein die Temperatur von 2016, damit der Trend zu immer neuen Hitzerekorden aufrecht erhalten werden konnte: