1

Warum die wachsende CO2-Konzentration ausschließlich menschengemacht ist

Häufig hören wir das Argument, dass die natürlichen Emissionen, sei es durch

  • Atmung der Pflanzen, Tiere und Menschen
  • biologische Zersetzungsprozesse
  • Ausgasung der Ozeane

so groß seien, dass die anthropogenen Emissionen im Vergleich kaum ins Gewicht fallen und quasi „im Rauschen untergehen“.

In der Tat sind die Respiration mit 130 GtC/a und die Ausgasung aus den Ozeanen mit 80 GtC/a wesentlich größer als die 9,5 GtC/a, die durch Verbrennung fossiler Energieträger und Zementproduktion zustandekommen.

Da liegt der Schluß nahe, anzunehmen, dass angesichts der großen natürlichen Umsätze von 210 GtC/a die anthropogenen Emissionen nur 5% ausmachen und daher relativ unbedeutend sind.

Dies ist aber ein Fehlschluß: Der Respiration steht ein gleichgroßer, sogar etwas größerer Betrag der Nettoprimärproduktion und der Ausgasung von 80 GtC/a ebenfalls ein leicht größerer Betrag der Absorption in den Ozeanen gegenüber.

Zwei einfache Tatsachen helfen, die Frage zu klären:

  1. Die jährlichen anthropogenen Emissionen sind deutlich größer als der Anstieg der CO2-Konzentration. Das heißt, dass es auf jeden Fall mehr Emissions-CO2 gibt als was von der der Atmosphäre aufgenommen wird. Die „restlichen“ Einflußfaktoren müssen demnach zwingend in ihrer Gesamtwirkung eine Kohlenstoffsenke sein – so stark, dass sie heute bereits mehr als die Hälfte des anthropogen erzeugten CO2 aufnehmen.
  2. In der Jahresbilanz sind sowohl die Ozeane als auch die Landpflanzen und mit ihnen die gesamte biologische Welt seit 100 Jahren strikte Kohlenstoffsenken sind, sie nehmen übers Jahr gemittelt jeweils mehr als 2 Gt/a mehr Kohlenstoff auf als sie abgeben.

Das folgende Diagramm zeigt sowohl die anthropenen Emissionen einschließlich Landnutzungsänderungen (Abholzung) als positive Beiträge während die „Verwendung“ dieser Emissionen als Verteilung nach Ozeanen, Landpflanzen und Anstieg der atmosphärischen Konzentration dargestellt ist:

Entscheidend ist, dass die unterjährigen natürlichen Austauschprozesse sich gegenseitig aufheben und nichts zum Anstieg der CO2-Konzentration beitragen, obwohl die beteiligten Mengen sehr viel größer als die anthropogenen Emissionen sind. Die Unterscheidung der Aufenthaltszeit und Ausgleichszeit hat Cawley in einer wissenschaftlichen Publikation vorgenommen. Hier möchte ich mich auf eine anschauliche vereinfachte Argumentation beschränken:

Eine Senke kann nicht gleichzeitig Quelle sein. Auch wenn es jahreszeitliche Schwankungen gibt, entscheidend ist die Bilanz am Ende des Jahres – wie bei einem Bankkonto. Darüber hinaus sind die Schwankungen der Art, dass die verstärkte Senkenwirkung aufgrund des Pflanzenwachstums im Frühjahr und Sommer stets dem folgenden Abbau und Zerfall vorausgeht. Die biologische Welt ist aus prinzipiellen Gründen immer eine Netto-Senke.

Die Ozeane kann man als riesige Kohlenstoff-Speicher mit der etwa 50 fachen Kapazität der Atmosphäre auffassen, die auf lange Sicht die CO2-Konzentration derjenigen der Atmosphäre „angleichen“, unter korrekter Berücksichtigung der nicht ganz trivialen physikalischen und chemischen Prozesse. Wir können davon ausgehen, dass bislang die Ozeane auf die vorindustrielle CO2-Konzentration von etwa 280 ppm angepasst sind und daher noch für sehr lange Zeit als effektive Senke wirken.

Daher müssen wir die Tatsache akzeptieren, dass die menschlichen Aktivitäten tatsächlich in den letzten 150 Jahren tatsächlich für ein Anwachsen der CO2-Konzentration um 50% gesorgt haben. An anderer Stelle wird der genaue Mechanismus der Abhängigkeit der Konzentration von den anthropogenen Emissionen behandelt. Damit ist allerdings noch nichts darüber gesagt, ob die Auswirkungen der erhöhten Konzentration eher nützlich oder schädlich sind.




Temperaturabhängigkeit der natürlichen CO2 Quellen und Senken


[latexpage]

Bei dem in diesem Blog und anderswo publizierten einfachen Modell der CO2-Senken und der natürlichen Emissionen tauchte in der Diskussion darüber immer wieder die Frage auf: Wie wird die — offensichtliche — Temperaturabhängigkeit der natürlichen CO2-Quellen, beispielsweise die ausgasenden Ozeane, oder der Senken wie die Photosynthese, berücksichtigt? Denn in dem Modell kommt keine langfristige Temperaturabhängigkeit vor, allenfalls ein kurzfristig zyklische. Ein langfristiger Trend der Temperaturabhängigkeit ist in den letzten 70 Jahren auch bei sorgfältiger Analyse nicht erkennbar.
In der zugrunde liegenden Publikation wurde ausgeschlossen, dass der Absorptionskoeffizient temperaturabhängig sein kann (Kapitel 2.5.3). Allerdings blieb dabei offen, ob nicht doch eine direkte Temperaturabhängigkeit der Quellen oder Senken möglich ist. Und warum diese nicht aus der statistischen Analyse erkennbar ist. Dies wird in dem vorliegenden Beitrag behandelt.

Ursprüngliches temperaturunabhängiges Modell

Die vereinfachte Form der CO2 Massenerhaltung in der Atmosphäre (siehe Gleichungen 1,2,3 der Publikation) mit anthropogenen Emissionen $E_i$ im Jahre $i$, den sonstigen, überwiegend natürlichen Emissionen $N_i$ (zur Vereinfachung werden die Landnutzungsemissionen den natürlichen Emissionen zugeschlagen), dem Zuwachs des CO2 in der Atmosphäre $G_i = C_{i+1} – C_i$ ($C_i$ ist atmosphärische CO2 Konzentration) und den Absorptionen $A_i$ ist:
$E_i – G_i = A_i – N_i$
Die Differenz der Absorptionen und der natürlichen Emissionen wurde linear modelliert mit einem konstanten Absorptionskoeffizienten $a$ und einer Konstante $n$ für die jährlichen natürlichen Emissionen:
$A_i – N_i = a\cdot C_i + n$

Während die Absorptionskonstante und der lineare Zusammenhang zwischen Absorption und Konzentration physikalisch sehr gut begründet und belegt ist, erscheint die Annahme der konstanten natürlichen Emissionen willkürlich. Daher ist es erhellend, statt eines konstanten Ausdrucks $n$ stattdessen aus den Messdaten und der berechneten Absorptionskonstanten $a$ das Residuum
$N_i = G_i – E_i + a\cdot C_i $
zu betrachten:

Der Mittelwert von $N_i$ ergibt den konstanten Modellterm $n$. Mit einer leichten Glättung ergibt sich ein periodischer Verlauf. Roy Spencer hat diese Schwankungen mit dem El Nino begründet, wobei nicht eindeutig ist, ob die Schwankungen den Absorptionen $A_i$ oder den natürlichen Emissionen $N_i$ zuzuordnen sind. Aber es ist keinerlei langfristiger Trend erkennbar. Daher ist die Frage zu klären, warum zwar kurzfristige Temperaturabhängigkeiten vorhanden sind, aber die langfristige globale Erwärmung im Modell anscheinend keine Entsprechung hat.

Temperaturabhängiges Modell

Nun erweitern wir das Modell, indem wir sowohl für die Absorptionen $A_i$ als auch für die natürlichen Emissionen $N_i$ zusätzlich eine lineare Temperaturabhängigkeit zulassen. Da unsere Messdaten nur deren Differenz liefern, können wir die Temperaturabhängigkeit dieser Differenz in einer einzigen linearen Funktion der Temperatur $T_i$, also $b\cdot T_i + d$ darstellen. Gesetzt den Fall, dass sowohl $A_i$ also auch $N_i$ temperaturabhängig sind, ist die Differenz der dazugehörigen linearen Ausdrücke wieder einen linearen Ausdruck. Demnach hat das erweiterte Modell diese Gestalt.
$A_i – N_i = a\cdot C_i + n + b\cdot T_i + d$
Im Prinzip könnten $n$ und $d$ zu einer einzigen Konstanten zusammengefasst werden. Da aber $d$ von der verwendeten Temperaturskala abhängt, und $n$ von der Maßeinheit der CO2 Konzentration, belassen wir es bei 2 Konstanten.

CO2 Konzentration als Proxy für Temperatur

Wie bereits in der Publikation im Kapitel 2.3.2 dargelegt, gibt es zwischen der CO2-Konzentration und der Temperatur einen Zusammenhang mit hoher Korrelation. Woher dieser Zusammenhang kommt, d.h. ob es einen kausalen Zusammenhang gibt (und in welcher Richtung) ist für diese Untersuchung unerheblich. Allerdings stellen wir hier nicht den Zusammenhang zwischen $T$ und $log(C)$ her, sondern den zwischen $T$ (Temperatur) und $C$ (CO2 Konzentration ohne Logarithmus).

Demzufolge kann die Temperatur-Anomalie aus der Konzentration mit der linearen Funktion
$T_i = e\cdot C_i + f$
mit
$e=0.0083, f=-2.72 $
approximiert werden.

Verwendung des CO2-Proxy in der temperaturabhängigen Gleichung

Setzt man für die Temperatur deren Proxy-Funktion in die temperaturabhängige Gleichung ein, so ergibt sich folgende Gleichung:
$A_i – N_i = a\cdot C_i + n + b\cdot (e\cdot C_i + f) + d $
bzw.
$A_i – N_i = (a+b\cdot e)\cdot C_i + (n+b\cdot f\cdot) + d $
Der Ausdruck auf der rechten Seite hat jetzt wieder die gleiche Gestalt wie die ursprüngliche Gleichung, also
$A_i – N_i = a`\cdot C_i + n` $
mit
$ a` = a + b\cdot e $
$ n` = n + b\cdot f + d $

Schlussfolgerungen

Daher können bei einer linearen Abhängigkeit der Temperatur von der CO2-Konzentration Temperatureffekte der Senken und Quellen nicht von Konzentrationseffekten unterschieden werden, beide gehen in die „effektive“ Absorptionskonstante $a`$ und die Konstante der natürlichen Emissionen $n`$ ein. Daher enthält das einfache lineare Quellen- und Senkenmodell sämtliche linearen Temperatureinflüsse.
Das erklärt die erstaunliche Unabhängigkeit des Modells von der globalen Temperaturerhöhung der letzten 70 Jahre.
Außerdem legt dieser Zusammenhang nahe, dass sich das Absorptionsverhalten der beiden atmosphärischen Senken auch in Zukunft nicht ändert.

Will man allerdings wissen, wie sich die Temperatur genau auf die Quellen und Senken auswirkt, müssen andere Datenquellen herangezogen werden. Für die Prognose künftiger CO2-Konzentration aus anthropogenen Emissionen ist dieses Wissen aufgrund des gefundenen Zusammenhangs nicht notwendig, vorausgesetzt der lineare Zusammenhang zwischen Temperatur und CO2-Konzentration bleibt uns noch eine Weile erhalten.




Emissionen des Kohlenstoffkreislaufs

In der Klimadiskussion wird zunehmend der sog. „CO2-Fußabdruck“ von Lebewesen, insbesondere des Menschen und von Nutztieren als Problem deklariert, bis dahin,

  • das Essen von Fleisch zu diskreditieren,
  • Nutztiere abzuschlachten (z.B. in Irland)
  • oder sogar junge Menschen davon abzuhalten, Kinder zu bekommen.

Diese Diskussion beruht auf falschen Voraussetzungen. Es wird so getan, als ob das Ausatmen von CO2 dieselbe „klimaschädliche“ Qualität hätte wie das Verbrennen von Kohle oder Erdöl.
Eine genauere Analyse des Kohlenstoffkreislaufs zeigt den Unterschied.

Der Kohlenstoffkreislauf

Alles Leben der Erde ist aus Kohlenstoffverbindungen aufgebaut.
Der Beginn der sogenannten Nahrungskette sind die Pflanzen, die mit der Photosynthese aus dem CO2 der Atmosphäre vorwiegend Kohlehydrate, teilweise auch Fette und Öle erzeugen und damit sowohl Kohlenstoff als auch Energie speichern.

Die weitere Verarbeitung dieser Kohlenstoffverbindungen teilt sich auf mehrere Zweige auf, bei denen wieder eine Umwandlung in CO2 erfolgt:

  • der unmittelbare Energieverbrauch der Pflanze, die „pflanzliche Atmung“,
  • der — überwiegend saisonale — Zerfall eines Teils oder der ganzen Pflanze, und Humusbildung,
  • der Energieversorgung von Tieren und Menschen als Nahrung. Hier findet außer der direkten Energieversorgung eine Umwandlung in Eiweiße und Fette statt, zum Teil auch in Kalk.
  • Mit der Nahrungskette werden die Eiweiße und Fette weitergereicht.
  • Im Laufe des Lebens geben Pflanzen, Tiere und Menschen einen Teil des über die Nahrung aufgenommenen Kohlenstoffs durch Atmung wieder als CO2, teilweise auch als Methan ab.
  • Mit der Verwesung der Tiere und Menschen wird über Zersetzungsprozesse teilweise das verbliebene CO2 wieder freigesetzt, teilweise bildet sich Humus, der kohlenstoffhaltig ist.
  • Der biologisch gebildete Kalk bindet das CO2 langfristig. Z.B. bindet jede Eierschale 5g CO2 für sehr lange Zeit.

Menschen und Tiere sind CO2 Senken, keine Quellen

Vielfach wird gesagt, dass Menschen und Tiere über Atmung etc. Kohlenstoff als CO2 oder Methan in die Atmosphäre geben, und daher zu die Emissionen vergrößern. Um zu zeigen, dass sie zusammen mit ihrer Nahrungskette dennoch CO2-Senken sind, wollen wir den als CO2 oder Methan ausgeschiedenen Kohlenstoff zurückverfolgen.
Dieser kommt entweder direkt über den Stoffwechsel aus der aufgenommenen Nahrung, oder aus den Fettreserven des eigenen Organismus. Die Fettreserven wiederum stammen aus der Nahrung, die in der Vergangenheit aufgenommen wurde.
Nun stammt alle Nahrung — mit Ausnahme von Medikamenten — aus Tieren oder Pflanzen. Tiere ernähren sich wiederum von Tieren oder Pflanzen. Am Ende der Nahrungskette stehen in jedem Falle Pflanzen. Diese holen sich all ihren Kohlenstoff aus dem CO2 der Atmosphäre.

Das heißt, dass jedes Kohlenstoffatom, dass wir als CO2 ausatmen, je nach Länge der Nahrungskette ursprünglich und daher vorher aus dem CO2 der Atmosphäre stammt und gebundenen worden war. Daher stammt sämtlicher Kohlenstoff aller Lebewesen, sei er gebunden oder als CO2 ausgeatmet, letztendlich aus der Atmosphäre über die Photosynthese. Das wird sehr anschaulich vom berühmten Nobelpreisträger Prof. Richard Feynman am Beispiel eines Baumes beschrieben (in englischer Sprache):

Alle Lebewesen sind temporäre Speicher des CO2. Die geschilderten Mechanismen bewirken unterschiedliche Halbwertszeiten dieser Speicherung.

Die Eingriffe des Menschen bewirken in der Regel eine Verlängerung der Speicherung und damit in der Konsequenz ein nachhaltigerer Umgang mit CO2:

  • Hauptsächlich durch Konservierung und damit Aufhalten der Fäulnisprozesse. Das bezieht sich nicht nur auf das haltbar machen von Lebensmitteln, sondern auch durch langfristige Konservierung von Holz, solange die Holzverwertung nachhaltig ist. Auf diese Weise ist das Bauen mit Holz eine langfristige Bindung von CO2.
  • Das Getreide vom letzten Jahr wird i.d.R. gelagert und erst etwa ein Jahr später zu Brot etc. weiterverarbeitet. In der Zwischenzeit sind die diesjährigen Getreidepflanzen schon wieder nachgewachsen. Damit sind die stoffwechselbedingten Emissionen von Mensch und Tier schon kompensiert, bevor sie stattfinden. Würde das Getreide ohne Verarbeitung verrotten, dann wäre es bereits im Herbst letzten Jahres wieder in CO2 zerfallen. Würde gar kein Getreide angebaut, würde von vorneherein sehr viel weniger CO2 der Luft gebunden. Es ist nachgewiesen, dass die Intensivierung der Landwirtschaft neben der gestiegenen CO2-Konzentration in der Atmosphäre maßgeblich zum Ergrünen der Erde seit 30 Jahren beigetragen hat, u.a. in Form von sich jährlich steigernden Spitzenernten.
  • Auch die Aufzucht von Nutztieren bedeutet eine CO2-Speicherung, nicht nur in Form der langlebigen Knochen. Die Nutztiere spielen auch eine wichtige Rolle bei der wichtigen Beseitigung von Graspflanzen (siehe weiter unten).

Einschränkung – Düngung und Mechanisierung der Landwirtschaft

3 Faktoren führen dazu, dass bei der Erzeugung von Lebensmitteln u.U. doch mehr CO2 freigesetzt wird als in der „freien Natur“, nämlich wenn Prozesse beteiligt sind, bei denen fossile Brennstoffe zum Einsatz kommen:

  • Die Verwendung von chemisch erzeugten Düngemitteln
  • die Mechanisierung der Landwirtschaft
  • die Industrialisierung der Lebensmittelerzeugung.

Aufgrund sehr unterschiedlicher Erzeugungsprozesse ist es sehr irreführend, von einem produktspezifischen CO2-Fußabdruck zu sprechen.

Um ein wichtiges Beispiel herauszugreifen: Rindfleisch wird gewöhnlich mit einem extrem hohen „CO2-Fußabdruck“ versehen. Das Rindfleisch, das von Rindern stammt, die weitgehend auf einer — ohne Kunstdünger gedüngten — Weide großgezogen werden, hat einen vernachlässigbar kleinen „CO2-Fußabdruck“, im Gegensatz zu dem, was in den üblichen Tabellen verbreitet wird. Dasselbe gilt für Wildtiere, die bei der Jagd erlegt werden.

Ein Beispiel, das die Doppelzüngigkeit der Diskussion illustriert, ist die Erzeugung von Bio-Treibstoffen. Dabei werden ganz genauso wie bei der übrigen Landwirtschaft Düngemittel und mit fossiler Energie betriebene mechanische Geräte eingesetzt. Die erzeugten Treibstoffe gelten jedoch als nachhaltig und „CO2-frei“. Derselbe Maßstab muß auch für die Erzeugung von Lebensmitteln gelten.

Bei der Düngung ist noch zu berücksichtigen, dass gedüngte Pflanzen sehr viel besser wachsen und daher auch mehr CO2 aus der Luft absorbieren. Das heißt, dass ein großer Teil des durch Düngung bedingten „Fußabdrucks“ durch das verbesserte Wachstum der Pflanze und daher erhöhte Photosynthese-Tätigkeit wieder kompensiert wird.

Abhängigkeiten

Die wichtigste Erkenntnis aus Biologie und Ökologie ist, dass es nicht in unserer Beliebigkeit ist, einzelne Elemente der sensiblen Ökologie zu entfernen, ohne dem Ganzen großen Schaden zuzufügen.
Typische Beispiele solch schädlicher Einflüsse sind:

  • Überweidung, d.h. Verödung durch Abfressen der (pflanzlichen) Lebensgrundlagen. Beispiele dafür sind weithin bekannt. Die „Überweidung“ kann auch durch „gut gemeinte“ und als positiv angenommene Eingriffe wie die „Verbesserung der Wasserqualität“ im Bodensee erfolgen, mit dem Ergebnis, dass es für Pflanzen und Tiere im Wasser nicht mehr genug Nahrung gibt.
  • Weniger bekannt ist die „Unterweidung„, insbesondere das Nicht-Beseitigen von verdorrtem Steppengras in den riesigen semiariden Gebieten der Erde. Zur Lösung dieses Problems hat Alan Savory das Konzept des „Holistic Managements“ mit großem Erfolg eingeführt. Dieses Konzept beinhaltet als wesentliche Komponente die Ausweitung der Viehzucht.
    Werden Pflanzen nicht durch „größere“ Tiere weiterverwertet, dann werden sie von Mikroorganismen verarbeitet und zerfallen in der Regel schnell wieder unter Freisetzung des gebundenen CO2, teilweise werden sie in Humus umgewandelt. Für die CO2-Konzentration der Atmosphäre ist also nichts gewonnen, wenn z.B. Rinder oder Schweine abgeschlachtet werden, um angeblich die CO2-Bilanz zu verbessern. Im Gegenteil, die Tiere verlängern die Lebensdauer der organischen kohlenstoffbindenden Substanz.
Abhängigkeit des Pflanzenwachstums vom CO2

Pflanzen gedeihen besser, je höher die CO2-Konzentration der Atmosphäre ist, insbesondere die C3-Pflanzen:

Für das Wachstum der Pflanzen war der Anstieg der CO2-Konzentration der letzten 40 Jahre ausgesprochen günstig, die Welt ist signifikant grüner geworden, mit dem Nebeneffekt der Senkenwirkung, also Aufnahme des zusätzlichen anthropogenen CO2:

Die C3-Pflanzen erreichen erst bei einer Konzentration von 800 ppm dieselbe Aufnahme von CO2 wie C4 Pflanzen. Darum werden vielen Gewächshäuser mit CO2 angereichert.

Schlußfolgerungen

Mit dem Wissen um diese Zusammenhänge ergeben sich zwingende Schlussfolgerungen:

  1. Aufgrund des Primats der Photosynthese und die Abhängigkeit allen Lebens davon ist die Gesamtheit der Lebewesen eine CO2-Senke, mittel- und langfristig kann also die CO2-Konzentration aufgrund des Einflusses der Lebewesen nur abnehmen, niemals zunehmen.
  2. Dabei hängt die photosynthetische Aktivität und daher auch die Senkenwirkung stark von der CO2-Konzentration ab. Je größer die CO2-Konzentration, desto größer ist die Senkenwirkung aufgrund des CO2-Düngungs-Effekts, vorausgesetzt die Pflanze bekommt genug Wasser und Licht und ggf. den notwendigen Dünger.
  3. Alle Lebewesen sind CO2-Speicher, mit unterschiedlichen Speicherzeiten.
  4. Es gibt mindesten 3 Formen langfristiger CO2-Bindung gibt, die zur Abnahme der CO2-Konzentration führen:

    • Kalkbildung
    • Humusbildung
    • nichtenergetische Holznutzung

  5. Der Einsatz von „technischen Hilfsmitteln“, die fossile Energie verbrauchen, muss bei den Betrachtungen getrennt werden von dem natürlichen Kohlenstoffkreislauf. Man kann also nicht sagen, ein bestimmtes Lebensmittel hat einen festen „CO2-Fußabdruck“. Der hängt einzig und allein von der Produktionsweise und der Tierhaltung ab.
    Eine „faire“ Betrachtung muss hier genauso wie z.B. bei Elektrofahrzeugen annehmen, dass die technischen Hilfsmittel der Zukunft oder die Herstellung von Düngemitteln nachhaltig sind.

Dazu kommt, dass unter Berücksichtigung des Wissens, dass mehr als die Hälfte der aktuellen anthropogenen Emissionen im Laufe des Jahres wieder absorbiert werden, führt bereits eine 45% Senkung der aktuellen Emissionen zu der „Netto-Null“ Situation, wo die atmosphärische Konzentration nicht mehr zunimmt. Selbst wenn wir die weltweiten Emissionen nur wenig ändern (was angesichts der energiepolitischen Entscheidungen in China und Indien sehr wahrscheinlich ist), wird noch in diesem Jahrhundert eine Gleichgewichtskonzentration von 475 ppm erreicht, die keinen Grund zur Beunruhigung gibt.




Der Wendepunkt der CO2-Konzentration


[latexpage]

Und steigt und steigt…?

Auf den ersten Blick steigt die atmosphärische CO2-Konzentration fortwährend an, dargestellt an den Jahresmittelwerten, die in Maona Loa gemessen werden (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt):

Die zentrale Frage, die sich stellt, ist die, ob die Konzentration immer schneller wächst, d.h. ob jedes Jahr mehr dazukommt? Dann wäre die Kurve konkav, also also nach oben gekrümmt.

Oder wird der jährliche Anstieg der Konzentration immer geringer? Dann wäre sie konvex, also nach unten gekrümmt.

Oder gibt es einen Übergang, also einen Wendepunkt im mathematischen Sinne? Das wäre daran zu erkennen, dass zunächst der jährliche Zuwachs immer größer wird, und ab einem bestimmten Zeitpunkt abnimmt.

Auf den ersten Blick erscheint die Gesamtkurve konkav, was bedeutet dass der jährliche Anstieg der Konzentration mit jedem Jahr augenscheinlich zunimmt.

Die Beantwortung dieser Frage ist entscheidend für die Frage, wie dringend Maßnahmen zur Eindämmung von CO2 Emissionen sind.

Genauere Untersuchung mit dem gemessenen jährlichen Anstieg

Um einen genaueren Eindruck zu bekommen, berechnen wir den jährlichen Anstieg der CO2-Konzentration (Stand 2023):

Damit bestätigt sich, dass bis 2016 ein klarer Trend zu immer höherem jährlichen Konzentrationsanstieg bestand, von knapp 0.75 ppm/Jahr im Jahre 1960 bis über 2.5 ppm/Jahr im Jahre 2016.

Seit 2016 geht jedoch der jährliche Anstieg zurück. Dabei spielt gewiss der Corona-bedingte Emissionsrückgang eine Rolle, dieser erklärt aber nicht den bereits 2016 einsetzenden Rückgang.

Es gibt also in der Konzentrationskurve im Jahre 2016 einen Wendepunkt, eine Trendumkehr von zunehmendem Konzentrationswachstum zu abnehmendem Konzentrationswachstum. Gibt es dafür eine zufriedenstellende Erklärung? Dies ist wesentlich, denn wenn wir absehen können, dass der Trend zurückgehenden Anwachsens der Konzentration anhält, dann ist absehbar, dass die Konzentration irgendwann nicht mehr weiter ansteigt und das Ziel des Pariser Klimaabkommens, das Gleichgewicht zwischen CO2-Quellen und CO2-Senken erreicht werden kann.

Erklärung durch stagnierende Emissionen

Im Rahmen des Global Carbon Brief Projekts hat Zeke Hausfather 2021 aufgrund neuer Erkenntnisse die Werte der globalen CO2-Emissionen der letzten 20 Jahre revidiert, mit dem wichtigen Ergebnis, dass die globalen Emissionen seit 10 Jahre im Rahmen der Messgenauigkeit konstant sind:

Um die Auswirkungen dieser wichtigen Erkenntnis zu bewerten, muss man den Zusammenhang zwischen Emissionen und CO2-Konzentration kennen.

Aus meinen eigenen Recherchen dazu in einer Publikation und in einem danach mit neuen Erkenntnissen ergänzten Blogbeitrag folgt, dass sich der Konzentrationsanstieg aus den Emissionen und den Absorptionen ergibt, die proportional zur CO2-Konzentration sind. Dieses Modell wurde in ähnlicher Form auch von anderen beschrieben und publiziert:

Trivialerweise folgt aus der Massenerhaltung, dass die Konzentration $C_i$ am Ende des Jahres $i$ aus der Konzentration des Vorjahres $C_{i-1}$, den natürlichen Emissionen $N_i$, den anthropogenen Emissionen $E_i$ und den Absorptionen $A_i$ ergibt:

\begin{equation}\label{mass_conservation}C_i = C_{i-1} + N_i + E_i – A_i \end{equation} Daraus ergibt sich unmittelbar die aus Emissionen und gemessenem Konzentrationsanstieg berechneten effektive Absorption:

\begin{equation}\label{absorption_measurement}A_i – N_i = E_i – (C_i – C_{i-1}) \end{equation}
Mit der Definition des Konzentrationswachstums
$G_i = C_i – C_{i-1} $
ergibt sich, dass die gesamte Senkenwirkung sich zwingend aus der Differenz der Emissionen und dem Konzentrationswachstum ergibt – ohne dass man wissen muss, wie diese Senkenwirkung im Detail zustande kommt. Dabei hat diese Gesamtsenkenwirkung zwei Komponenten, und zwar die Jahressumme aller Absorptionen, die zu $A_i$ zusammengefaßt werden, und die als $N_i$ zusammengefaßten sog. „natürlichen Emissionen“, das ist die Jahressumme sämtlicher Emissionen außer den anthropogenen, die separat als $E_I$ geführt werden:

\begin{equation}\label{absorption_measurement}A_i – N_i = E_i – G_i \end{equation}
Unter der Annahme konstanter jährlicher natürlicher Emissionen
$N_i = n$
und der linearen Modellannahme, also dass die Absorptionen proportional zur Konzentration des Vorjahres sind,
$A_i = a\cdot C_{i-1}$
wird das Absorptionsmodell als lineares Modell der Konzentration erstellt (diese beiden Annahmen werden ausführlich in der Publikation begründet):

\begin{equation}\label{absorption_equ}E_i – G_i = a\cdot C_{i-1} – n\end{equation}
Mit $n = a\cdot C_0$ läßt sich die Modellgleichung umformulieren, es ergibt sich damit die Gleichgewichtskonzentration $C_0$ für den Fall von Nullemissionen, also die vorindustrielle Gleichgewichtskonzentration :

\begin{equation}\label{absorption_equ}E_i – G_i = a\cdot(C_{i-1} – C_0)\end{equation}

Die Regressionsrechnung dieses Gleichungssystems mit den aktuellen CO2 Emissionsdaten (Selektion country = World) liefert das Ergebnis $a=0.0187$ und $C_0 = 277 ppm $. Bei dieser Berechnung werden die Emissionen aufgrund von Landnutzungsänderungen nur anteilig (23%) berücksichtigt. Dies erklärt die zahlenmäßigen Unterschiede des Ergebnisses mit denen der zitierten Publikationen. Das geringe Wichtung der Landnutzungsänderungen ist gerechtfertigt:

  • Alle Quellen stimmen darin überein, dass die veröffentlichten Werte der Emissionen durch Landnutzungsänderung stark fehlerbehaftet sind,
  • Mit der Wichtung der Emissionen durch Landnutzungsänderungen von etwa 25% führt das Modell zu einer Gleichgewichtskonzentration $C_0$, die der vorindustriellen Gleichgewichtskonzentration von etwa 280 ppm entspricht.

Mit
$N_i = G_i – E_i + a\cdot C_{i-1} $
können aus der modellierten Absorption die variablen jährlichen natürlichen Nettoemissionen $N_i$ ermittelt werden. Deren Mittelwert ist die Konstante $n$.

Daraus ist erkennbar, dass die residualen natürlichen Emissionen eine zyklische Komponenten enthalten, die mit dem El Nino und kontingenten Ereignissen wie dem Ausbruch des Pinatubo zusammenhängt.

Mit diesem Modell wird die bekannte Konzentration zwischen 2000 und 2020 aus den Daten zwischen 1950-2000 sehr genau prognostiziert. Da das Modell zwar einen linearen Trend, aber keine zyklischen Schwankungen vorsieht – diese landen alle in der Variabilität der natürlichen Emissionen – , zeigt auch die modellierte Konzentration keine zyklischen Schwankungen:

Wachstumsrate der modellierten Konzentration

Die Wachstumsrate der modellierten Konzentration $G^{model}_i$ ergibt sich durch Umstellung der Modellgleichung:
$ G^{model}_i = E_i – a\cdot C_{i-1} + n$
Diese zeigt nun auch nicht mehr die zyklischen Schwankungen:

Es bleibt nach wie vor ein globales Maximum, das Jahr des Maximums ist allerdings von 2016 nach 2013 gewandert.
Diese El Nino bereinigte Konzentrationsänderungen bestätigen die Aussage von Zeke Hausfather, dass in der Tat die Emissionen bereits seit 10 Jahre konstant sind.

Entwicklung der CO2-Konzentration bei konstanten Emissionen

Um den Wendepunkt der CO2-Konzentration zu verstehen, wollen wir mit der Annahme konstanter Emissionen $E_i = E$ und den Gleichungen (\ref{absorption_measurement}) und (\ref{absorption_equ}) den prognostizierten Verlauf berechnen:

\begin{equation}\label{const_E_equ}C_i – C_{i-1} = E- a\cdot(C_{i-1} – C_0)\end{equation}
Die linke Seite beschreibt den Anstieg der Konzentration. Auf der rechten Seite wird von den konstanten Emissionen $E$ ein mit wachsender Konzentration $C_{i-1}$ wachsender Betrag abgezogen, demnach nimmt der Konzentrationszuwachs mit wachsender Konzentration ab. Dies kann mit einem speziellen Bankkonto veranschaulicht werden. Sobald die Konzentration den Wert $\frac{E}{a} + C_0 $ erreicht, ist der Gleichgewichtszustand erreicht, bei dem die Konzentration nicht mehr weiter anwächst, also die oft verwendete „Netto-Null“ Situation.

Mit den aktuellen Emissionen von 4.7 ppm wäre „Netto-Null“ bei 515 ppm, während sich beim „Stated-Policies“ Emissionsscenario der Internationalen Energieagentur (IEA), das eine leichte Reduktion von 3% pro Dekade in der Zukunft vorsieht, ein Gleichgewicht bei 475 ppm einstellt, wie in der obigen Publikation beschrieben. Mit den Prognosedaten der IEA wird dies voraussichtlich 2080 der Fall sein:

Demnach sind konstante Emissionen eine hinreichende Begründung für einen konvexen Verlauf der CO2-Konzentration, wie wir ihn seit 2016 vorfinden. Gleichzeitig wird damit belegt, dass CO2-Absorptionen in der Tat mit zunehmender Konzentration zunehmen.




Emissionen und CO2 Konzentration – ein evidenzbasierter Ansatz


[latexpage]

Eine neue Sichtweise auf das Problem

Die Klimawissenschaft befasst sich in der Regel mit der Frage „Wie viel CO2 verbleibt in der Atmosphäre?“, angesichts der anthropogenen Emissionen und der begrenzten Fähigkeit der Ozeane und der Biosphäre, die überschüssige CO2 Konzentration aufzunehmen. Dies hat zu Schlussfolgerungen der Art geführt, dass ein bestimmter zunehmender Anteil der anthropogenen Emissionen werden für immer in der Atmosphäre verbleibt.

Wir ändern den Fokus der Aufmerksamkeit, indem wir die logisch äquivalente Frage „Wie viel CO2 verbleibt nicht in der Atmosphäre?“ stellen. Warum ist das so anders? Die Menge an CO2 , die nicht in der Atmosphäre verbleibt, kann anhand direkter Messungen berechnet werden. Wir müssen nicht jeden einzelnen Absorptionsmechanismus aus der Atmosphäre in die Ozeane oder Pflanzen analysieren. Aus den bekannten globalen Konzentrationsänderungen und den bekannten globalen Emissionen können wir die Summe der tatsächlichen jährlichen Absorption gut abschätzen. Diese sind mit der CO2 -Konzentration verbunden, was die Leithypothese eines linearen Absorptionsmodells begründet. Es stellt sich heraus, dass wir die tatsächlichen Koeffizienten der einzelnen Absorptionsmechanismen nicht zu kennen brauchen – es reicht aus, ihre lineare Abhängigkeit von der aktuellen CO2 Konzentration anzunehmen.

Dies ist eine Zusammenfassung eines kürzlich veröffentlichten Artikels, in dem alle Aussagen detailliert abgeleitet und mit Referenzen und einem mathematischen Modell untermauert werden. Im Unterschied zu dem Artikel wird in dieser Kurzfassung der Einfluß der mit großen Unsicherheiten behafteten Emissionen aufgrund von Landnutzungsänderung weggelassen, weil

  1. es legitim ist, die ohnehin mit großen Unsicherheiten behafteten Landnutzungsemissionen den unbekannten natürlichen Emissionen zuzuschlagen
  2. sich der statistische Fehler des Ergebnisses bei Weglassen der aufgrund der Unsicherheit ziemlich willkürlichen Landnutzungsänderung verringert, was zu höherer Prognosequalität führt.
Massenerhaltung von CO2

Wie bei der Jahresbilanz eines Bankkontos ergibt sich die atmosphärische CO2-Bilanz aus den Gesamtemissionen abzüglich der Gesamtabsorption:

Konzentrationswachstum = Emissionen – Absorptionen

Der jährliche Anstieg der CO2-Konzentration (orange) wächst im Schnitt langsamer die gesamten anthropogenen Emissionen (blau), was bedeutet, dass die daraus berechnete Netto Absorption (grün) mit der steigenden CO2-Konzentration tendenziell zunimmt:

Wichtig ist hierbei zu bemerken, dass alle natürlichen Emissionen und Absorptionen, die innerhalb der Messintervalle (hier je 1 Jahr) geschehen und sich im langjährigen Gleichgewicht befinden, „unsichtbar“ sind.

Die Annahme einer annähernden Linearität der relevanten Absorptionsprozesse

Dies wird durch ein Streudiagramm veranschaulicht, das die effektive CO2-Absorption mit der CO2-Konzentration in Beziehung setzt. Physikalischer Hintergrund dieser Darstellung ist, dass alle Diffusions- und Absorptionsprozesse mit der Konzentration linear skalieren, ebenso die Aufnahme von CO2 bei der Photosynthese (C4-Pflanzen haben ein Plateau mit geringem aber trotzdem linearen Anstieg im Konzentrationsbereich 280..600 ppm).

Es legt eine langfristige lineare Abhängigkeit der effektiven Absorption von der atmosphärischen CO2-Konzentration mit erheblichen kurzfristigen Abweichungen nahe, wobei die effektive Null-Absorptionslinie bei ca. 280 ppm geschnitten wird. Dies wird als die vorindustrielle CO2-Gleichgewichtskonzentration angesehen, bei der die natürlichen jährlichen Emissionen durch die jährlichen Absorptionen ausgeglichen sind. Die durchschnittliche jährliche Absorption beträgt etwa 2 % der CO2-Konzentration, die 280 ppm überschreitet.

CO2 Konzentration als Proxy für die Temperatur

Wenn wir Vorhersagen mit hypothetischen zukünftigen CO2-Emissionen machen, kennen wir die zukünftigen Temperaturen nicht. Ohne in die problematische Diskussion darüber einzutauchen, wie stark der Einfluss der CO2-Konzentration auf die Temperatur ist, nehmen wir den „schlimmsten Fall“ einer vollständigen Vorhersagbarkeit der Temperatur als Auswirkung der CO2-Konzentration an.

Ohne Annahmen über die C->T-Kausalität zu machen, wird die geschätzte funktionale Abhängigkeit des Temperatur aus der Regression mit der CO2-Konzentration C wie folgt ermittelt:

Tproxy  = -16,0 + 2,77*ln(C) = 2,77* ln(C/(323ppm))

Dies entspricht einer Sensitivität von 2,77*ln(2) °C = 1,92° C bei Verdoppelung der CO2-Konzentration

Modell-Validierung

Das Modell mit konstantem Absorptionsparameter von knapp 2% und konstanten natürlichen Emissionen wird aufgrund statistischer Prüfung als das zuverlässigste ausgewählt auf der Grundlage von Emissionsdaten und Konzentrationsdaten von 1950 bis 2000.

Die CO2 Konzentrationen zwischen 2000 und 2020 werden vom Modell und den Emissionsdaten 2000-2020 vorhergesagt.

Dies ist eine hervorragende Vorhersage der Konzentrationen auf der Grundlage der Emissionen und der oben genannten Modellannahmen. Es gibt nur geringe Abweichungen zwischen den Vorhersagen und den tatsächlichen Daten. Obwohl das Modell unterschiedliche Absorptionen im Laufe der Zeit zulässt, führen die Daten der letzten 70 Jahre, d.h. des Zeitraums, in dem die meisten anthropogenen CO2 -Emissionen stattfanden, zu der Schlussfolgerung, dass der CO2 -Absorptionsparameter keine signifikante temperatur- oder sonstige zeitabhängige Komponente aufweist und ein aktueller CO2 -Emissionsimpuls mit einer Halbwertszeit von 37 Jahren absorbiert wird.

Zukünftiges Emissionsszenario

Das wahrscheinlichste zukünftige Emissionsszenario ist das Emissionsszenario der internationalen Energieagentur (IEA) mit annähernd konstanten, leicht sinkenden globalen Emissionen. Der tatsächlich verwendete Datensatz für eine realistische Zukunftsprojektion („stated policies“) wird durch eine Trendextrapolation über das Jahr 2050 hinaus erweitert. Die Emissionen werden im Jahr 2100 nicht auf Null reduziert werden, sondern ähnlich dem Wert von 2005 sein.

Vorhersage der künftigen CO2 Konzentration

Aus diesem realistischen Emissionsszenario wird die zukünftige CO2-Konzentration mit unserem Modell rekursiv vorhergesagt.

Mit dem von der IEA angegebenen Szenario der „erklärten Maßnahmen“, d.h. Fortschreibung der heutigen Gesetzgebung, wird in der zweiten Hälfte dieses Jahrhunderts ein Gleichgewicht der CO2-Konzentration von ca. 475 ppm erreicht werden.  Auf der Grundlage der obigen empirischen CO2-Temperaturproxy-Gleichung entspricht dieser Anstieg der CO2-Konzentration von 410 ppm (im Jahr 2020) auf 475 ppm einem Temperaturanstieg von 0,4°C ab 2020 bzw. 1,4°C ab 1850.

Daraus folgt, dass wir in der zweiten Hälfte dieses Jahrhunderts eine maximale CO2-Konzentration von etwa 475 ppm erwarten können. Zu diesem Zeitpunkt werden die Emissionen durch die Absorption vollständig ausgeglichen sein, was per Definition die „Netto-Null-Situation“ darstellt.

Ganz offensichtlich besitzt diese Kurve einen Wendepunkt, also einen Punkt mit maximalem Konzentrationsanstieg. Mit bloßem Auge ist nicht erkennbar, ob der in der nahen Zukunft sein muss oder bereits in der Vergangenheit. Eine Analyse der Konzentrationsdaten bis Ende 2022 ergibt, dass das Maximum der Steigung und damit der Wendepunkt der Konzentration bereits im Jahre 2016 gewesen war, eine sehr schöne Bestätigung des vorgestellten Konzepts:

Geht man von dem unwahrscheinlichen pessimistischen Fall aus, dass die CO2-Konzentration für alle globalen Temperaturveränderungen voll verantwortlich ist, so beträgt der maximale erwartete Anstieg der globalen Temperatur, der durch den erwarteten Anstieg der CO2-Konzentration verursacht wird, 0,4° C ab jetzt oder 1,4°C ab Beginn der Industrialisierung.

Wenn wir also mit den derzeitigen CO2 -Emissionen und einer Effizienzsteigerung von 3 % pro Jahrzehnt weiterleben, ist das optimistische Pariser Klimaziel von 1,5° bei Netto Null erfüllt.