1

Treibhauseffekt-Rückkopplung durch Wasserdampf


[latexpage]

In der Klimadiskussion wird das Argument der Rückkopplung durch Wasserdampf dazu herangezogen, um die Klimawirkung der Treibhausgase — die Sensitivität bei Verdoppelung von deren Konzentration in der Atmosphäre — , die nach Strahlungstransportgleichung und generellem Konsens maximal 0,8° beträgt, um einen angeblichen Faktor 2-6 zu verstärken. Allerdings wird das gewöhnlich nicht genauer quantifiziert, es werden in der Regel nur Formeln mit dem „finalen Feedback“ angegeben.

Vor kurzem haben David Coe, Walter Fabinski und Gerhard Wiegleb in der Publikation „The Impact of CO2, H2O and Other ‚Greenhouse Gases‘ on Equilibrium Earth Temperatures“ unter anderem genau diese Rückkopplung beschrieben und analysiert. In Anlehnung an ihre Publikation wird dieser Effekt mit dem teils gleichen, teils leicht unterschiedlichen Ansatz im folgenden hergeleitet. Die Ergebnisse sind fast identisch.

Dabei wird hier von allen anderen Effekten, die bei der Bildung von Wasserdampf auftreten, wie z.B. Wolkenbildung, abgesehen.

Der grundsätzliche Mechanismus der Wasserdampfrückkopplung

Ausgangspunkt ist eine Temperaturerhöhung der Atmosphäre um ∆T0, ungeachtet deren Ursache. Typischerweise wird der Treibhauseffekt als primäre Ursache angenommen. Die Argumentation ist nun, dass die erwärmte Atmosphäre mehr Wasserdampf aufnehmen kann, d.h. der Sättigungsdampfdruck (SVP = „Saturation Water Pressure“) erhöht sich und es wird angenommen, dass sich konsequenterweise auch die Wasserdampfkonzentration ∆H2O erhöht, und zwar als lineare Funktion der Temperaturänderung. (Die Temperaturänderung ist so klein, dass eine Linearisierung auf jeden Fall legitim ist):
$\Delta H_2O = j\cdot \Delta T_0 $
Dabei ist $j$ die Proportionalitätskonstante für die Wasserdampfkonzentration.
Eine erhöhte Wasserdampfkonzentration bewirkt wiederum aufgrund der Treibhauswirkung von Wasserdampf eine Temperaturerhöhung, die linear von der Wasserdampfkonzentration abhängt:
$\Delta T_1 = k\cdot \Delta H_2O $
Zusammengefaßt bewirkt also die auslösende Temperaturerhöhung ∆T0 eine Folgeerhöhung der Temperatur ∆T1:
$\Delta T_1 = j\cdot k\cdot \Delta T_0 $
Da die Voraussetzung des Verfahrens ist, dass die Ursache der auslösenden Temperaturerhöhung unerheblich ist, bewirkt die Erhöhung um ∆T1 natürlich ebenfalls wieder einen Rückkopplungszyklus:
$\Delta T_2 = j\cdot k\cdot \Delta T_1 = (j\cdot k)^2\cdot \Delta T_0$
Dies wiederholt sich rekursiv. Die finale Temperaturänderung ist demnach eine geometrische Reihe:
$\Delta T = \Delta T_0\sum_{n=0}^\infty(j\cdot k)^n = \Delta T_0\cdot \frac{1}{1-j\cdot k} $
Wäre $j\cdot k\ge 1$, würde die Reihe divergieren und die Temperatur über alle Grenzen wachsen. Daher ist es wichtig, sich über die Größe dieser beiden Rückkopplungsfaktoren Klarheit zu verschaffen.

Abhängigkeit der möglichen Wasserdampfkonzentration von der Temperatur

Die maximal mögliche Wasserdampfkonzentratio in Abhängigkeit von der Temperatur T (in °C) ist durch den Sättigungsdampfdruck SVP (englisch „saturation vapour pressure“, SVP) begrenzt. Dieser wird durch die Arden Buck Gleichung, (eine moderne, überarbeitete Version der Magnus-Formel) sehr genau beschrieben:
$ SVP = 0.61121\cdot \exp{((18.678-\frac{T}{234.5})(\frac{T}{257.14+T}))} $
Es wird hier die Standard-Atmosphäre mit 15°C Boden- bzw. Wasseroberflächentemperatur und adiabatischem Temperaturgradient von -6.5°C/km betrachtet.

Die absolute Differenz $\frac{\Delta (SVP(T))}{\Delta T}$ ist naturgemäß bei höheren Temperaturen, also in Bodennähe, am größten:

Die relative Differenz $\frac{\frac{\Delta (SVP(T))}{\Delta T}}{SVP(T)}$ wird mit zunehmender Höhe größer, bewegt sich zwischen 4% und 8%.

Die mögliche Zunahme der relativen Luftfeuchtigkeit – das Verhältnis des tatsächlichen Dampfdrucks im Vergleich zum Sättigungsdampfdrucks – als Folge der globalen Temperaturerhöhung $T_0$ ist durch diese relative Änderung des Sättigungsdampfdrucks begrenzt.

Da die mittlere, dominante Infrarot-Abstrahlung der Erde etwa in der Höhe 5000m stattfindet, und sich oberhalb davon kaum mehr Wasserdampf befindet, ist es sinnvoll, 6% als oberes Limit der Änderung der relativen Luftfeuchtigkeit infolge einer Temperaturerhöhung um 1°C anzunehmen. Demzufolge ergibt sich die Konstante $j$ als $j=0.06$. Dieser Wert ist etwas kleiner als die üblicherweise genannten (aber gewöhnlich nicht belegten) 7%. Nach dem obigen Diagramm wären 7% Erhöhung der Luftfeuchtigkeit erst oberhalb von 8000 m ü.d.M. möglich.

Abhängigkeit des Treibhauseffekts von der Änderung der relativen Luftfeuchtigkeit

Der Infrarot Strahlungstransport in der Atmosphäre ist von der relativen Luftfeuchtigkeit abhängig. Dies wird in dem bekannten und bewährten Simulationsprogram MODTRAN berücksichtigt. Mit zunehmender Luftfeuchtigkeit sinkt infolge des Treibhauseffektes des Wasserdampfes die ausgehende Infrarotstrahlung.

Zwischen der Luftfeuchtigkeit 60% und 100% ist die Strahlungsabnahme linear. Daher wird zur Ermittlung der Abnahme der Strahlungsleistung und der zur Kompensation notwendigen Temperaturerhöhung die Zunahme der relativen Luftfeuchtigkeit von 80% auf 86% betrachtet.

Dazu stellen wir die Parameter der MODTRAN Simulation auf

  • die aktuelle CO2-Konzentration von 420 ppm,
  • eine relative Luftfeuchtigkeit von 80%,
  • und eine Wolkenkonstellation, die der mittleren IR Abstrahlungsleistung von 240 $\frac{W}{m^2}$ nahe kommt.

Der Temperatur-Offset wird nun so lange vergrößert, bis die reduzierte iR-Abstrahlung von 0.6 \frac{W}{m^2} durch Temperaturerhöhung wieder ausgeglichen ist. Dies ist bei einer Erhöhung der Bodentemperatur um 0.185 °C der Fall.

Eine 6% höhere relative Luftfeuchtigkeit bewirkt also einen Treibhauseffekt, der durch eine Temperaturerhöhung von 0.185°C ausgeglichen wird, Auf eine Änderung um (theoretische) 100% Luftfeuchtigkeit hochgerechnet sind das $k=3.08$°C/100% .

Der finale Rückkopplungsfaktor und der gesamte Treibhauseffekt

Damit bewirkt eine um 1 Grad höhere Temperatur in einem Rückkopplungszyklus eine zusätzliche Temperaturerhöhung um $k\cdot j = 0.06*3.08= 0.185$.

Die geometrische Reihe führt zu einem Verstärkungsfaktor $f$ des reinen CO$_2$ Treibhauseffekts um
$f=\frac{1}{1-0.185} = 1.23 $

Damit ist die um die Wasserdampfrückkopplung verstärkte Sensitivität bei Verdopplung der CO$_2$ Konzentration $\Delta T$ nicht mehr $\Delta T_0=0.8$°C, sondern
$\Delta T = 1.23\cdot 0.8$ °C = 0.98°C $\approx$ 1°C

Würde man die vom „Mainstream“ postulierten 7% maximaler Erhöhung der Luftfeuchtigkeit zugrunde legen, wäre die zusätzliche Temperaturerhöhung 0.215 °C und demzufolge die Verstärkung des Treibhauseffekts
$f=\frac{1}{1-0.215} = 1.27 $. Die Sensitivität für CO$_2$ Verdoppelung wäre dann
$\Delta T = 1.27\cdot 0.8$ °C = 1.02°C $\approx$ 1°C

Dieses Ergebnis berücksichtigt nicht die um die durch höhere Wasserdampfkonzentration stärkere Wolkenbildung und deren Abschirmung des einfallenden Sonnenlichts, die eine negative Rückkopplung bewirkt.




Der adiabatische Temperaturgradient – vereinfachte Herleitung


[latexpage]

Die atmosphärische Temperatur variiert mit der Höhe. Dieses wohlbekannte und gut verstandene Phänomen wird als Adiabatischer Temperaturgradient bezeichnet. Dieser beschreibt den Temperaturgradienten in der Höhe und besagt im Wesentlichen, dass die Temperatur pro km Höhe um 4-9,8 Grad Celsius abnimmt. Der Grund für die Erörterung dieses Phänomens ist, dass der vertikale Temperaturgradient oft fälschlicherweise einem strahlungsbedingten „Treibhauseffekt“ zugeschrieben wird, obwohl er in Wirklichkeit die natürliche thermodynamische Folge eines Gasvolumens in einem Gravitationsfeld ist. Da es sich um einen adiabatischen Effekt handelt, ist keine Änderung des Gesamtenergiegehalts beteiligt.
Es gibt viele Möglichkeiten, dieses Phänomen zu erklären. Hier möchte ich es auf die elementarste Weise tun.

Die erste wichtige Annahme ist das lokale thermodynamische Gleichgewicht. Das bedeutet, dass es in einem bestimmten Luftvolumen keine makroskopischen Zustandsänderungen z. B. bei Temperatur oder Druck gibt. Nehmen wir ein Luftvolumen an, das groß genug ist, damit die Temperatur definiert werden kann, und das klein genug ist, damit die Temperatur in diesem Volumen konstant ist, typischerweise „Gaspaket“ genannt.
Dieses Volumen mit der Masse $m$ befindet sich im planetarischen Gravitationsfeld mit der Gravitationskonstante $g$. In der Höhe h hat es die potentielle Energie $$ E_p = m\cdot g\cdot h. $$ und die thermische Energie dieses Volumens mit der Wärmekapazität (bei konstantem Druck) $c_p$ und der Temperatur $T$ gegenüber der Referenztemperatur $T_0$ ist
$$ E_t = c_p\cdot m\cdot (T – T_0) $$ Die zweite Annahme ist, dass das System adiabatisch ist, d.h. es fließt keine Energie in das System hinein oder aus ihm heraus. Das bedeutet, dass die Summe $E$ von $E_p$ und $E_t$ konstant ist:
$$ E = E_p + E_t = const. $$ Die Gesamtableitung von E muss also 0 sein: $$\frac{\partial E}{\partial h}dh + \frac{\partial E}{\partial T} dT = 0 $$ $$m\cdot g \cdot dh + c_p\cdot m\cdot dT = 0 $$ Daraus folgt direkt der Temperaturgradient:
$$ \frac{dT}{dh} = – \frac{g}{c_p} $$ Was bedeutet das? Ausgehend von der Annahme der lokalen Energieerhaltung verliert ein Molekül, das sich nach oben bewegt, Bewegungsenergie im Austausch gegen potentielle Energie, muss also um den entsprechenden Energiebetrag kühler werden, d.h. das Anheben einer Masse im Gravitationsfeld muss von der Bewegungsenergie bezahlt werden, und eine fallende Masse wird beschleunigt, wodurch die Temperatur steigt. Das Gleichgewicht ist erreicht, wenn die Entropie des Systems maximal ist.
Mit $g=9,81 \frac{m}{s^2}$ und $c_p = 1,012 \frac{J}{g\cdot °K} $ beträgt der adiabatische Temperaturgradient für trockene Luft $$ \Gamma = -\frac{9,81}{1,012} \frac{°K}{km} = -9.8 \frac{°K}{km} $$

Wenn die Luft feucht ist, kondensiert der Wasserdampf je nach Druck und Temperatur zu flüssigem Wasser, wobei die latente Wärme von 2260 J/g freigesetzt wird. Diese zusätzliche Kondensationsenergie verringert den Temperaturgradienten, da der „Preis“ für die potenzielle Energie (teilweise) aus der Kondensationsenergie bezahlt werden kann, ohne dass die Temperatur sinkt. Der resultierende feuchtadiabatische Temperaturgradient liegt im Bereich von -4…-9,8 °K/km, abhängig von der Luftfeuchtigkeit. Im globalen Durchschnitt beträgt der Temperaturgradient -6,4 °K/km.

Was hat der Temperaturgradient mit dem Klima oder dem Treibhauseffekt zu tun? Tatsächlich erklärt der Temperaturgradient einen Großteil, wenn nicht sogar den gesamten globalen Temperaturunterschied zwischen der Erdoberfläche und dem oberen Teil der Troposphäre, ohne dass explizite Annahmen über einen „Antrieb“ oder Treibhausgase gemacht werden (Treibhausgase sind jedoch für die Wechselwirkung mit der Infrarotstrahlung relevant). Der durch den Temperaturgradient beschriebene Zustand ist ein Gleichgewichtszustand der Atmosphäre ohne Energiefluss:

Adiabatischer Temperaturegradient in der Troposphäre

Wenn die Atmosphäre von diesem Zustand abweicht, zwingt die Thermodynamik das System stark in diese Richtung, so wie ein in einem Behälter verteiltes Gas zum Zustand gleicher Dichte tendiert. Die adiabatische Barometergleichung beschreibt den großräumigen Gleichgewichtszustand und stellt eine starke Korrelation zwischen dem Temperaturgefälle und dem Druckgefälle her. Daher wird manchmal der Begriff verwendet, dass „Druck die Temperatur verursacht“. Im Zusammenhang mit adiabatischen Bedingungen in einem Gravitationsfeld ist dies zwar nicht falsch, aber die Formulierung ist irreführend, so dass manche Leute fälschlicherweise glauben, dass statischer Druck Wärme erzeugen würde. Daher ziehe ich es vor, zur Beschreibung des Phänomens auf Grundprinzipien wie Energieerhaltung und Entropiemaximierung zu verweisen.

Das Konzept des adiabatischen Temperaturgradienten ist in der Atmosphärenforschung sehr mächtig: Im Jahr 1967 wurde die Oberflächentemperatur der Venus durch Auswertung des Temperaturgradienten korrekt bestimmt – ein expliziter Hinweis auf Treibhausgase war nicht erforderlich, obwohl implizit klar ist, dass die Infrarotstrahlung in den Weltraum von den Treibhausgasen aus der Nähe des Randes der Atmosphäre stammt. Unabhängig davon, wo das eintreffende Sonnenlicht absorbiert wird, verteilt sich die entstehende Wärme via Konvektion und Strahlung entsprechend des Temperaturgradienten.
Dies wurde kürzlich mit einer verbesserten Parametrisierung der Wärmekapazität neu berechnet.

Demzufolge handelt es sich bei der Venus keineswegs um einen „Runaway Treibhauseffekt“, die hohe Oberflächentemperatur hat ihre Ursache ich der sehr viel dickeren Atmosphäre als der der Erde, nur zu einem geringen Teil infolge der reinen CO$_2$-Atmosphäre.




Häufig gestellte Fragen zur CO2-Sensitivät

Welche Rolle spielt der Wasserdampf bei der CO2-Sensitivität, wirkt er nicht als Treibhausverstärker?

Es geht dabei im Wesentlichen um die Frage, ob durch Wasserdampf eher eine positive Rückkopplung des CO2-bedingten Treibhauseffektes erfolgt (wie z.B. von Vertretern des PIK behauptet) oder eher eine negative, wie von Prof. Richard Lindzen beschrieben.

Hierzu betrachten wir zwei in diesem Zusammenhang wichtige, unbestrittene Fakten.

Das globale Energiebudget

Diejenigen, die behaupten, dass der Wasserdampf den Treibhauseffekt verstärke, berufen sich darauf dass bei steigender Temperatur die Luft gemäß der Clausius-Clapeyron-Gleichung mehr Wasserdampf aufnehmen könne, was zu einem stärkeren Treibhauseffekt führt und damit zu einer positiven Rückkopplung. Der treibhausverstärkende Gesamteffekt des Wasserdampfes ist im globalen Energiebudget mit etwa 26,6W/qm berücksichtigt:

Ebenso bekannt wie unstrittig ist die Bildung von Wolken aus Wasserdampf. Und die meisten Wolken haben die Eigenschaft, dass sie Licht reflektieren. Demzufolge kommt aufgrund der Wolkenalbedo nur ein Teil der kurzwelligen Sonnenenergie bei der Erde an. Der Energieverlust aufgrund der Wolkenreflexion ist im Energiebudget mit etwa -47,5 W/qm berüc ksichtigt. Demzufolge ist die Abkühlung aufgrund der Wolkenbildung global gesehen um mehr als 20 W/qm größer als deren Treibhauswirkung. Die Gesamtwirkung aller Wolken bildet demnach eine sehr starke negative Rückkopplung beim Treibhauseffekt. Wo ist die Evidenz, dass bei marginalen Veränderung der Wolkenbedeckung sich dieser Effekt umkehrt?

Die energetischen Auswirkungen des Rückgangs der Wolkenbedeckung über 30 Jahre

Als wahrscheinlich erste von mittlerweile vielen Arbeiten zur Untersuchung der Albedoveränderung wurde im Artikel Nettoabnahme des Reflexionsvermögens der Wolken, der Aerosole und der Erdoberfläche bei 340 nm Wellenlänge nachgewiesen, dass über einen Zeitraum von 33 Jahren aufgrund der Abnahme der Wolkenbildung und demzufolge Abnahme der Reflexivität der Atmosphäre der Energiezufluß um 2,33 W/qm zugenommen hat:

Dies wirft nicht nur die Frage auf, warum ein 4-fach größerer Effekt als die Treibhauswirkung des CO2 bislang in den Klimamodellen nicht berücksichtigt wird, es zeigt zweifelsfrei, dass nur eine Abnahme der globalen Bewölkung zu einer Temperaturzunahme führt. Eine Bewölkungszunahme würde demzufolge zu einer Temperaturabnahme führen.

Demzufolge wäre eine positive Wasserdampf-Rückkopplung nur möglich, wenn nachgewiesen werden kann, dass global gesehen ein erhöhte Wasserdampfgehalt in der Atmosphäre zu einer verringerten Wolkenbildung führt. Viel Spaß bei diesem Ansinnen.

Wohlgemerkt, es hilft nicht, irgend einen Einzeleffekt zu finden (wie z.B. stratosphärische Cirruswolken), bei dem nur ein Treibhauseffekt stattfindet, aber keine Reflexionsreduktion, es muß schon nachgewiesen werden, dass der Effekt für den globalen Erwartungswert gilt.




Vorhersagen der globalen Temperatur


[latexpage]

Der traditionelle Ansatz wird in Frage gestellt

Die Schlüsselfrage zum Klimawandel ist Wie stark beeinflusst der $CO_2$-Gehalt der Atmosphäre die globale Durchschnittstemperatur? Und insbesondere, wie empfindlich reagiert die Temperatur auf Veränderungen der $CO_2$-Konzentration?
Wir untersuchen dies anhand von zwei Datensätzen, dem HadCRUT4-Datensatz zur globalen Durchschnittstemperatur und dem CMIP6-Datensatz zum $CO_2$-Gehalt.
Die Korrelation zwischen diesen Daten ist ziemlich hoch, so dass es ziemlich offensichtlich erscheint, dass ein steigender $CO_2$-Gehalt steigende Temperaturen verursacht.
Mit einem linearen Modell scheint es einfach herauszufinden, wie genau die Temperaturen im Jahr i $T_i$ durch den $CO_2$-Gehalt $C_i$ und das zufällige (Gauß’sche) Rauschen $\epsilon_i$ vorhergesagt werden. Aus theoretischen Überlegungen (Strahlungsantrieb) ist es wahrscheinlich, dass das Modell mit $log(C_i)$ am besten passt:
$T_i = a + b\cdot log(C_i) + \epsilon_i$
Die Konstanten a und b werden durch eine Anpassung mit der Methode der kleinsten Quadrate bestimmt (mit dem Python-Modul OLS aus dem Paket statsmodels.regression.linear_model):
a=-16,1, b=2,78
Daraus lässt sich die Sensitivität bestimmen, die als Temperaturdifferenz bei Verdopplung von $CO_2$ definiert ist:
$\Delta(T) = b\cdot log (2)$ °C = 1,93 °C
Das sind fast 2 °C, eine Zahl, die nahe an den offiziellen Schätzungen des IPCC liegt.

Was ist daran falsch, es scheint sehr einfach und logisch zu sein?
Wir haben das Residuum der Anpassung mit der Methode der kleinsten Quadrate noch nicht untersucht. Unser Modell besagt, dass das Residuum Gaußsches Rauschen sein muss, d.h. unkorreliert.
Der statistische Test, um dies zu messen, ist der Ljung-Box-Test. Betrachtet man das Q-Kriterium, so ist es Q = 184 mit p=0. Das bedeutet, dass der Residuum signifikante Korrelationen aufweist, es gibt strukturelle Informationen im Residuum, die mit dem vorgeschlagenen linearen Modell des log($CO_2$)-Gehalts nicht erfasst wurden. Ein Blick auf das Diagramm, das die angepasste Kurve zeigt, lässt erahnen, warum der statistische Test fehlgeschlagen ist:

Wir sehen 3 Diagramme:

  • Die gemessenen Temperaturanomalien (blau),
  • die geglätteten Temperaturanomalien (orange),
  • die Rekonstruktion der Temperaturanomalien basierend auf dem Modell (grün)

Während das Modell im Vergleich zu den verrauschten Originaldaten vernünftig aussieht, ist es aus den geglätteten Daten offensichtlich, dass es neben $CO_2$ noch andere systematische Gründe für Temperaturänderungen geben muss, die vorübergehende Temperaturrückgänge wie während 1880-1910 oder 1950-1976 verursachen. Am überraschendsten ist, dass von 1977-2000 der Temperaturanstieg deutlich größer ist, als es das Modell des $CO_2$-Anstiegs erwarten ließe.

Die systematischen Modellabweichungen, u.a. ein 60-jähriges zyklisches Muster, sind auch zu beobachten, wenn man sich die Residuen der kleinsten Quadrate Schätzung anschaut:

Erweiterung des Modells mit einer einfachen Annahme

Angesichts der Tatsache, dass die Ozeane und bis zu einem gewissen Grad auch die Biosphäre enorme Wärmespeicher sind, die Wärme aufnehmen und wieder abgeben können, erweitern wir das Temperaturmodell um einen Speicherterm der Vergangenheit. Ohne den genauen Mechanismus zu kennen, können wir auf diese Weise die „natürliche Variabilität“ in das Modell einbeziehen. Vereinfacht ausgedrückt entspricht dies der Annahme: Die Temperatur in diesem Jahr ist ähnlich wie die Temperatur des letzten Jahres. Mathematisch wird dies durch einen erweiterten autoregressiven Prozess ARX(n) modelliert, wobei angenommen wird, dass die Temperatur im Jahr i eine Summe von

  • einer linearen Funktion des Logarithmus des $CO_2$-Gehalts,log($C_i$), mit Offset a und Steigung b,
  • einer gewichteten Summe der Temperatur der Vorjahre,
  • zufälligem (Gauß’schem) Rauschen $\epsilon_i$

$ T_i = a + b\cdot log(C_i) + \sum_{k=1}^{n} c_k \cdot T_{i-k} +\epsilon_i $

Im einfachsten Fall ARX(1) erhalten wir

$ T_i = a + b\cdot log(C_i) + c_1\cdot T_{i-1} +\epsilon_i $

Mit den gegebenen Daten werden die Parameter geschätzt, wiederum mit dem Python-Modul OLS aus dem Paket statsmodels.regression.linear_model:
$a=-7.33, b=1.27, c_1=0.56 $
Die Rekonstruktion des Trainingsdatensatzes ist deutlich näher an den Originaldaten:

Das Residuum der Modellanpassung sieht nun viel mehr wie ein Zufallsprozess aus, was durch den Ljung-Box-Test mit Q=20,0 und p=0,22 bestätigt wird

Bei Berücksichtigung der natürlichen Variabilität reduziert sich die Empfindlichkeit gegenüber $CO_2$ auf
$\Delta(T) = b\cdot log (2) °C = 0,88 °C $

In einem anderen Beitrag haben wir die Abhängigkeit des atmosphärischen $CO_2$-Gehalts von den anthropogenen $CO_2$-Emissionen untersucht, und dies als Modell für Vorhersagen des zukünftigen atmosphärischen $CO_2$-Gehalts verwendet. Es werden u.a. 3 Szenarien untersucht:

  • „Business as usual“ neu definiert anhand der neuesten Emissionsdaten als Einfrieren der globalen $CO_2$-Emissionen auf das Niveau von 2019 (was auch tatsächlich geschieht)
  • 100% weltweite Dekarbonisierung bis 2050
  • 50% weltweite Dekarbonisierung bis 2100
  • 50% weltweite Dekarbonisierung bis 2050
  • sofortige 50% weltweite Dekarbonisierung (hypothetisch)

Das resultierende atmosphärische $CO_2$ wurde wie folgt berechnet, die statistischen Fehler sind so klein, dass die Prognose für die nächsten 200 Jahre sehr enge Fehlerintervalle aufweist.

Füttert man das Temperatur-ARX(1)-Modell mit diesen vorhergesagten Zeitreihen des $CO_2$-Gehalts, so sind für die Zukunft folgende globale Temperaturentwicklungen zu erwarten:

Schlussfolgerungen

Die folgenden Schlussfolgerungen werden unter der Annahme gezogen, dass es tatsächlich eine starke Abhängigkeit der globalen Temperatur vom atmosphärischen $CO_2$-Gehalt gibt. Ich bin mir bewusst, dass dies umstritten ist, und ich selbst habe an anderer Stelle argumentiert, dass die $CO_2$-Sensitivität bei nur 0,5°C liegt und dass der Einfluss der Wolkenalbedo viel größer ist als der von $CO_2$. Dennoch lohnt es sich, die Mainstream-Annahmen ernst zu nehmen und einen Blick auf das Ergebnis zu werfen.

Unter dem„business as usual“-Szenario, d.h. konstante $CO_2$-Emissionen auf dem Niveau von 2019, ist bis 2150 mit einem weiteren Temperaturanstieg um ca. 0,5°C zu rechnen. Das sind 1,4°C über dem vorindustriellen Niveau und damit unter der 1,5° C-Marke des Pariser Klimaabkommens.
Viel wahrscheinlicher und realistischer ist das Szenario „50%ige Dekarbonisierung bis 2100“ mit einem weiteren Anstieg um 0,25°C, gefolgt von einem Rückgang auf das heutige Temperaturniveau.

Die politisch propagierte „100%ige Dekarbonisierung bis 2050“, die nicht nur ohne wirtschaftlichen Zusammenbruch der meisten Industrieländer völlig undurchführbar ist, bringt uns zurück auf das kalte vorindustrielle Temperaturniveau, was nicht wünschenswert ist.