Analyse des Stromausfalls in Spanien am 28. April 2025
Hintergrund und Vorgeschichte
Einführung Am 28. April 2025, um 12:33 Uhr, erlebte Spanien einen massiven Stromausfall, der das gesamte Stromnetz der Iberischen Halbinsel lahmlegte. Dieser Blackout, der als eines der schwerwiegendsten Ereignisse in der jüngeren Geschichte des Landes gilt, hatte seine Wurzeln in einer Kombination aus technischen, wirtschaftlichen und politischen Faktoren, die sich über Monate und Jahre entwickelten. Dieser Bericht analysiert die zeitliche Abfolge, die Ursachen und die Konsequenzen des Ausfalls basierend auf den bereitgestellten Daten.
Vorgeschichte und Warnsignale Bereits im Frühjahr 2024 zeigten sich erste Anzeichen von Instabilität im spanischen Stromnetz. Nach Jahren sinkender Stromerzeugungspreise für Wind- und Solarenergie sanken diese auf negative Day-Ahead-Preise, was darauf hinwies, dass die Marktdynamik nicht mehr ausreichte, um die Erzeugung rentabel zu halten. Trotz Subventionsmaßnahmen wurde die Drosselung erneuerbarer Energien zunehmend notwendig, was die „Flitterwochen für erneuerbare Energien“ beendete[1]. Studien wie die der Organisation „Ökologischer Wandel“, prognostizierten, dass die Wahrscheinlichkeit eines Blackouts im Jahr 2025 fünfmal höher sei als 2021[2]. Der Mutterkonzern Red Eléctrica, Redeia, wies zwei Monate vor dem Ereignis auf die Risiken hin, die durch den Ausbau erneuerbarer Energien und den Rückgang konventioneller Kraftwerke (Kohle, Gas, Kernkraft) entstanden. Besonders die geringere Systemträgheit und die Unfähigkeit, sich an Störungen anzupassen, wurden als kritische Faktoren genannt[3].
Entwicklung in den Tagen vor dem Blackout Sechs Tage vor dem Ausfall, am 22. und 24. April, berichtete Red Eléctrica von ungewöhnlichen Kombinationen von Störungen, die das Netz destabilisierten. Am 22. April um 19:00 Uhr führte eine plötzliche Richtungsänderung des Stromaustauschs mit Portugal (von Export zu Import) sowie eine Reduzierung der Photovoltaikproduktion durch schlechte Wetterbedingungen zu Spannungsschwankungen[4]. Ähnliche Probleme traten am 24. April um 18:00 Uhr auf, als ein rascher Anstieg der Photovoltaikproduktion und Exports nach Frankreich die Leitungen überlastete[5]. Diese Ereignisse deuteten auf eine wachsende Verwundbarkeit des Netzes hin, die durch die hohe Abhängigkeit von erneuerbaren Energien verstärkt wurde.
Verlauf des Blackouts und Folgen
Ablauf des Blackouts am 28. April 2025 Der eigentliche Zusammenbruch begann um 12:33 Uhr, als das Netz ein erstes „Ereignis“ erlitt, vermutlich ein Verlust erneuerbarer Erzeugung, möglicherweise solarbasierter Anlagen im Südwesten Spaniens. Innerhalb von Millisekunden stabilisierte sich das System kurzzeitig, doch 1,5 Sekunden später folgte ein zweites Ereignis, das die Instabilität verschärfte[6]. Etwa 3,5 Sekunden nach dem ersten Ereignis brachen die Verbindungen nach Frankreich zusammen, was den Stromfluss von etwa 2,5 GW unterbrach[7]. Der Frequenzabfall erreichte schließlich 49,25 Hz bei einer Rate of Change of Frequency (RoCoF) von -0,8 Hz/S, was zum vollständigen Netzversagen führte[8]. Der Verlust von 15 GW Solarenergie und der anschließende Ausfall konventioneller Kraftwerke (z. B. Kernkraftwerke, wie der automatische Abschalt des Reaktors in Golfech um 12:34 Uhr) trugen zum Kollaps bei[9].
Ursachen und technische Details Die Hauptursache war ein Überangebot an erneuerbarer Energie, das die Nachfrage überstieg, was zu Frequenzabweichungen führte. Schutzrelais schalteten Teile des Netzes ab, und die geringe Momentanreserve (z. B. 26,54 % um 12:30 Uhr nur in Spanien) sowie der gleichzeitige Ausfall von Kraftwerken wie Omledilla (130 MW) und UF Sabinar (193 MW) verschärften die Krise[10]. Die hohe asynchrone Erzeugung (über 70 % in den Wochen zuvor) und die Abhängigkeit von instabilen Verbindungen (z. B. nach Frankreich) machten das System anfällig für kaskadierende Ausfälle[11].
Nachwirkungen und Maßnahmen Nach dem Blackout aktivierte Spanien Gasenergie, um das Netz zu stabilisieren, und drosselte erneuerbare Energien vorübergehend[12]. Die Wiederherstellung der Versorgung war ein langwieriger Prozess, der einen ganzen Tag dauerte. Der Vorfall hat die Debatte über den Ausbau erneuerbarer Energien und die Notwendigkeit robusterer Netzinfrastrukturen angeheizt.
Fazit Der Blackout vom 28. April 2025 war das Ergebnis kumulativer Warnsignale, die ignoriert wurden, kombiniert mit technischen Schwächen im Umgang mit erneuerbaren Energien. Eine verbesserte Netzstabilität, höhere Reserven und eine balancierte Energiemix-Strategie sind zwingend erforderlich, um zukünftige Krisen zu verhindern. Konkret muss zu jedem Zeitpunkt sichergestellt sein, dass die Momentanreserve mindestens 40 %, besser 50 % der Last ist. Solange noch keine zuverlässigen netzbildenden Wechselrichter im Einsatz sind, sind damit dem weiteren Ausbau der Erneuerbaren Energien klare Grenzen gesetzt.
Die Energiewende geht von der Zielvorstellung aus, dass der komplette Energiebedarf durch Wind- und Sonnenergie gedeckt werden soll. Beide Energiearten zeichnen sich dadurch aus, dass sie
volatil sind, d.h. nicht die ganze Zeit verfügbar sind,
dass sie keine hohe Energiedichte haben, d.h. viel (Boden-)Fläche beanspruchen
Ziel dieser Untersuchung ist, an dem eingeschränkten konkreten Beispiel der Basisenergieversorgung eines beispielhaften 4-Personen Haushalt in Form von
Elektrizität
Warmwasser
Heizung
zu ermitteln, wie groß der Flächenbedarf für eine Vollversorgung mittels Photovoltaik ist, ohne Energiesubventionierung durch Backup von Kohle-, Gas- oder Kernkraftwerken.
Annahmen zum Verbrauch und Energiespeicherung
Beim Verbrauch wird von folgenden Annahmen ausgegangen:
Der direkte Stromverbrauch beträgt im Jahr 4000 kWh.
Energieerzeugung, Speicherung mit Batterien und Wasserstoff
Batteriespeicher für Tag/Nacht-Ausgleich Für die kurzfristige Speicherung photovoltaischen Stroms, d.h. zur Überbrückung der Tag-/Nachtvolatilität werden Batteriespeicher angenommen, was zu einer 75% Strom-Autarkie im Jahresdurchschnitt führt. Von diesen 75% stammt die Hälfte direkt und damit verlustlos von der Photovoltaik, die andere Hälfte, also 37,5% kommen vom Batteriespeicher unter der optimistischen Annahme von 10% Verlust. Die restlichen 25% müssen aus gespeicherten Wasserstoff generiert werden. Der Batteriespeicher ist so bemessen, dass er etwa die Kapazität des halben durchschnittlichen Tagesbedarfs hat, im Beispiel also 6 kWh.
Brennstoffzelle und Wärmepumpe für die Heizung Da die Heizung im überwiegend sonnenarmen Winter erfolgt, kann allenfalls 1/3, also etwa 3500 kWh durch die direkte Umwandlung von PV-Strom mit einer Wärmepumpe gewonnen werden. Der Rest von 7500 kWh erfolgt durch Speicherung von Wasserstoff und Rückumwandlung in Elektrizität und Wärme. Die Kennzahlen dazu sind exemplarisch der Spezifikation der Panasonic Brennstoffzelle entnommen. Diese 5 KW Brennstoffzelle hat einen elektrischen Wirkungsgrad von 56% und einen thermischen Wirkungsgrad von 39%, also fallen pro kWh Wasserstoff 0,56 kWh Strom und 0,39 kWh verwertbare Wärme an. Erfolgt die Heizung mit einer Wärmepumpe, dann wird der Stromanteil um den COP-Faktor „aufgewertet“. Um eine realistische Bewertung abzugeben, verwende ich einen konservativen COP-Faktor von 3. Je nach individuellen Gegebenheiten kann dieser bis maximal 5 sein. Der effektive Heizwert des Wasserstoffs ist dann pro erzeugte kWh $0,56 kWh\cdot 3 + 0,39 kWh = 2,07 kWh $, also etwas mehr als das doppelte des theoretischen Brennwerts, maximal bei einem COP-Faktor von 5 sind es 3,19 kWh.
Elektrolyse für die Wasserstoff-Erzeugung Bei der Elektrolyse wird einen Wirkungsgrad von 62,5% angenommen, gemäß des Datenblatts des Enapter Elektrolyseurs, der z.B. in der Komplettlösung PICEA Anwendung findet. Die Wärme des Elektrolyseurs kann ggf. zur Warmwasserbereitung mitverwendet werden, da sie aber überwiegend in der warmen Jahreszeit anfällt, wird sie hier nicht berücksichtigt. 1 kWh primäre PV Energie erzeugt demnach 0,625 kWh Wasserstoff (und etwa 0,33 kWh nicht speicherbare Wärme), bei Nutzung einer Brennstoffzelle und Wärmepumpe also 1,29 (maximal 2) kWh Heizwärme und 0,35 kWh nutzbare elektrische Energie.
Flächenbedarf
Zur Berechnung der notwendigen Kollektorfläche wird der Gesamtverbrauch aufgeteilt:
Stromnutzung direkt vom Modul oder dem Batteriespeicher mit einem mittleren Wirkungsgrad von 95%, für elektrische Verbraucher, Warmwasser und Heizung in der Übergangszeit: $ (5000\cdot 0,75 + \frac{3500}{3})\cdot \frac{100}{95} kWh = 5175 kWh $
Stromerzeugung aus gespeichertem Wasserstoff bei einem Gesamtwirkungsgrad von 35%, für elektrische Verbraucher und Warmwasser (die Abwärme der Brennstoffzelle wird als Wärmequelle für die Wärmepumpe im Winter verwendet): $(5000\cdot 0,25)\cdot \frac{100}{35} kWh = 3571 kWh $
Heizwärme aus gespeichertem Wasserstoff bei einem Gesamtwirkungsgrad von 129%: $7500\cdot \frac{100}{129} kWh = 5814 kWh $
Daraus ergibt sich ein Gesamtbedarf von primärer PV-Energie von 14.560 kWh im Jahr, also eine Durchschnittsleistung von 1661 Watt. Das entspricht bei dem in Deutschland mittleren Ertrag von 10,6% der installierten Maximalleistung einer installierten Leistung von 15,7 kWp, also 39 Module zu je 400 Wp mit einer Gesamtmodulfläche von 67 qm. Bei Abweichungen von der optimalen Südausrichtung steigt die Anzahl der notwendigen Module. Unter der Voraussetzung der Nutzung einer Wärmepumpe wird zusätzlich noch Gartenfläche für den sog. Wärmekollektor benötigt, ungefähr 40qm pro KW Heizleistung. Bei 11 KW Heizleistung müssen also 440 qm Garten aufgegraben und mit einem Wärmekollektor bestückt werden. Die Bepflanzung auf dieser Fläche ist stark eingeschränkt.
Die von der Photovoltaik beanspruchte effektive Bodenfläche ergibt sich unter der Annahme von durchschnittlich etwa 10,5 W/qm Bodenfläche. Dieser Wert ist deswegen deutlich niedriger als die Leistung pro Modulfläche, weil die Module in der Regel schräg gestellt sind, und somit etwa die doppelte Modulfläche verschatten. PV-Module, die in die gleiche Richtung ausgerichtet sind, können im Mittel nicht dichter aufgestellt werden. Diese Bodenfläche wird implizit auch bei Dachmontage beansprucht, sie überlappt sich dann aber mit der Grundfläche des Gebäudes. Bei der Modellrechnung ergibt sich also eine Mindestbedarf von 158 qm Bodenfläche, um den Energiebedarf für Strom, Warmwasser und Heizung eines durchschnittlichen 4 Personen-Einfamilienhauses zu decken. Diese Fläche ist für jeden Haushalt notwendig, daher ist die reine PV-basierte Lösung für Mehrfamilienhäuser, wo der einzelnen Familie weniger nutzbare Fläche zur Verfügung steht, unrealistisch. Von Stadthäusern und gemieteten Wohnungen ganz zu schweigen. Eine dort auf dem Dach installierte Anlage kann allenfalls einen Teil des Bedarfs abdecken. Die besten Voraussetzungen hat ein Einfamilienhaus mit großem Grundstück, dessen Qualität durch die installierte Wärmepumpe deutlich eingeschränkt wird.
Potential von Brennholz
Bestandserhaltend geerntetes Brennholz ist eine nachhaltige Energiequelle, kann also ebenfalls als künftiger Energieträger berücksichtigt werden. Eine Überschlagsrechnung zeigt das Potential von Brennholz als Beitrag zum Heizen von Wohngebäuden:
Würde die ganze Waldfläche systematisch nachhaltig bewirtschaftet und wird knapp die Hälfte als Brennholz verwendet, steht rechnerisch für jeden Einwohner pro Jahr die Heizenergie von $ 0.137\cdot 10 \cdot 1600 kWh = 2192 kWh $ zur Verfügung. Für einen 4-Personen-Haushalt also 8768 kWh. Das entspricht ungefähr der o.g. Heizenergie aus gespeichertem Wasserstoff (7500 kWh). Optimistisch gesehen, kann also langfristig für den größten Teil der Bevölkerung statt Wasserstoff auch Holz zum nachhaltigen Heizen im Winter verwendet werden. Eine Verwendung in Kraftwerken wäre dann aber ausgeschlossen.
Die aktuelle für Privathaushalte verwendete Energiemenge aus Brennholz ist aber im Schnitt pro Person und Jahr nur $ \frac{30 \cdot 2900}{82.3} kWh = 1057 kWh $, was bei einem 4-Personen Haushalt 4288 kWh entspricht. Grenzen der weiteren Nutzung werden insbesondere auch durch den Naturschutz gesetzt. Weiterhin ist zu prüfen, ob dieses Brennholz tatsächlich aus nachhaltiger Nutzung der heimischen Wälder stammt oder ob es importiert ist.
Fazit
Als Fazit ist festzuhalten, dass das Ideal der Energiewende nur von einem Teil der Bevölkerung im eigenen Wohnbereich umgesetzt werden kann, den wohlhabenden Eigentümern eines Einfamilienhauses. Zu dem Aufwand an Dach- und Bodenfläche kommt noch der finanzielle Aufwand für die beschriebenen Geräte. Stand heute sind die Investitionskosten für ein solches autarkes System noch so teuer, dass in realistischen Amortisationszeiten von 10-20 Jahren allenfalls eine 75% Autarkie für die Stromgewinnung mit PV-Modulen und Batteriespeicher, und ggf. einer kleinen Wärmepumpe für die Warmwasserbereitung von März-Oktober mit Überschuss-PV-Strom sinnvoll ist. Dabei entfallen die horrenden Kosten für die Wasserstoff-Elektrolyse und Lagerung, sowie die teure und große Gartenflächen erfordernde Installation einer Heizungs-Wärmepumpe, dem nach aktueller Gesetzgebung künftig verpflichtenden Standard für neu installierte Heizsysteme. Die Abschätzung über die Verwendung von Holz als — bereits üblichem — Energieträger zum Heizen weist einen Weg, die unbezahlbar teuren Investitionen in Wasserstoff als Energieträger für Privathaushalte zu umgehen. Allerdings sind die Begrenzungen zu berücksichtigen, die durch die nachhaltige Nutzung der Wälder gesetzt sind.
In diesen Betrachtungen wurde weder der Energieaufwand für den Mobilität noch der für die industrielle Herstellung aller Gebrauchsgüter berücksichtigt. Eine neuere Studie hat verschiedene Szenarien der Energieversorgung der Schweiz mit erneuerbaren Energien durchgerechnet, wo der Verkehr mitberücksichtigt wird. Auch eine Kostenanalyse steht noch aus, da von einigen Produkten die Endkundenpreise (noch) nicht bekannt sind und zu erwarten ist, dass die – aktuell prohibitiven – Preise für Elektrolyseure und Brennstoffzellen deutlich fallen werden.
Flächenverbrauch der Photovoltaik
[latexpage]
Um den Flächenverbrauch für photovoltaische Energiegewinnung realistisch abzuschätzen, gehen wir von den existierenden PV-Anlagen in Deutschland aus. Nach den Informationen des Fraunhofer Instituts wurden 2020 in Deutschland durchschnittlich 926 kWh pro installiertem kWp erzielt (50 TWh bei 54 GWp installierter Leistung), das sind durchschnittlich 10,5% der installierten PV-Leistung. Ein gängiges Modul mit 1,7 m2 Fläche hat aktuell die Leistung 345-400 Wp. Pro m2 Kollektorfläche ergibt sich demnach eine erwarteter Jahresertrag von 188-218 kWh. Verteilt auf die 8766 Stunden des Jahres ergibt sich also ein theoretischer Durchschnittsertrag von 21,4-24,9 $\frac{W}{m^2}$.
Diese Überlegungen beziehen sich auf die aktive Kollektorfläche. Die Landnutzungsfläche ist um mindestens einen Faktor 2 größer, weil die Kollektoren zur besseren Ausbeute schräg gestellt werden und demzufolge zur Vermeidung von Abschattung entsprechende Abstände bleiben müssen. Solange die Solarkollektoren auf Dächern montiert sind, spielen diese Überlegungen eine untergeordnete Rolle, aber bei Freilandanlagen entsteht auch bei Solaranlagen das Problem des Flächenverbrauchs. Demzufolge kann bei einer großflächigen Anlage in unseren Breitengraden höchstens von einem Durchschnittsertrag von 10,7-12,5 $\frac{W}{m^2}$ Bodenfläche ausgegangen werden.
Nach Herstellerangaben werden auf 164 ha 465 000 Module mit einer gesamten installierten Leistung von 187 MW gebaut (pro Modul 402 W installierte Leistung, also modernste Hochleistungsmodule). Ein Modul mit $1.7 m^2$ Fläche beansprucht demnach etwa $3.5 m^2$ Bodenfläche, etwas mehr als die doppelte Modulfläche. Der Boden-Flächenbedarf für 1kW installierte Leistung ist also $8.8 m^2$. Nach der oben beschriebenen offiziellen Stastistik des Fraunhofer Instituts über die gesamte solare Stromproduktion in Deutschland ergibt sich ein erwarteter Ertrag von 926 kWh/Jahr für jedes installierte kW, das ist ein durchschnittlicher Ertrag (der aber nicht gleichmäßig verteilt anfällt) von etwa 106 Watt für jedes installierte kW. Um 1 kW mittlerer Dauerleistung zu erzeugen, müssen also 9.5 kW physisch installiert werden, mit einem Boden-Flächenbedarf von $83.6 m^2$. Für das volatile Äquivalent eines nicht-volatilen, grundlastfähigen AKW mit 1.5 GW Leistung werden demnach 125 $km^2$ Bodenfläche benötigt.
Lösung der Volatilität durch Speicherung
Die durchaus signifikanten Verluste der kurzfristigen (Tag/Nacht) Speicherung mit Batterien (etwa 10% bei max. 1 Tag Speicherung) sollen in dieser groben Betrachtung vernachlässig werden. Realistisch können bei mehrtägiger Speicherung aufgrund der Leckströme nur 60-75% der eingesetzten Energie wieder gewonnen werden. Für eine langfristige Energiespeicherung kommen Batterien aus Material- und Kostengründen ohnehin nicht in Frage. Wenn ein Anteil der solar erzeugten Energie über einen längeren Zeitraum, also chemisch gespeichert werden muß, ist aufgrund der Wandlungsverluste nach Wasserstoff und ggf. Methan mit einem deutlich höheren „Primärverbrauch“ an Energie zu rechnen. Vereinfachend gehe ich von der Annahme eines – für die Herstellung und Wieder-Verstromung von Methan realistischen – Wirkungsgrades von 25% aus, mit dem 1/4 der zu erzeugenden Energie über einen längeren Zeitraum gespeichert werden muß, während 3/4 der Jahresenergie direkt oder mit kurzfristiger Batteriespeicherung verbraucht wird. Dies führt in der Summe zum 1.75-fachen Primärverbrauch. Die zusätzlichen 75% sind der Preis für die „Grundlastfähigkeit“.
Demzufolge hat jedes kW an saisonbereinigter, grundlastfähiger Dauerleistung einen Boden-Flächenbedarf von $146 m^2$.
Das Äquivalent von einem grundlastfähigen AKW der Leistung 1.5 GW beansprucht demnach eine Landfläche von etwa $ 220 km^2$, oder 147 $km^2$ Landverbrauch für jedes GW grundlastfähiger PV-Energie.
Die aktuelle Planung der Energiewende sieht einen Ausbau der Solarenergiegewinnung mit einer gesamten installierten Leistung von 200 GW vor. Das bedeutet einen Gesamtflächenbedarf von 1760 $km^2$, etwa 0,5% der Gesamtfläche Deutschlands bzw. knapp 1% der landwirtschaftlichen Nutzfläche. Der durchschnittliche volatile Ertrag davon sind etwa 21 GW, bei Berücksichtung von kurz- und langfristiger Speicherung zum Ausgleich der Volatilität verbleiben noch 12 GW grundlastfähige Leistung, gerade mal 20% der aktuell benötigten elektrischen Energie von durchschnittlich 57 GW.
Energiewende-Fakten
[latexpage]
Solarenergie ist im Winter unbrauchbar
Es gibt – teilweise prominente – Stimmen, im Winter mit photovoltaisch betriebenen Wärmepumpen zu heizen. Das ist eine völlig realitätsferne Illusion. Fakt ist, dass PV-Anlagen in unseren Breitengraden in den 4 Wintermonaten November-Februar so gut wie keine Leistung erbringen. Eine Anlage mit 6 KW installierter Leistung erbringt Ende Oktober kaum mehr als 3kWh am Tag, das entspricht dem Heizwert eines Braunkohlenbriketts.
Der Umstand, dass im Winter so wenig Sonnenenergie vorhanden ist, ist ja grade der Grund, dass es einen Winter gibt.
Eine Langzeitspeicherung mit Batterien ist unmöglich
Um den Strombedarf eines einzigen Haushaltes bei einem Tagesbedarf von 10 kWh während der Wintermonate zu decken, müßte der Bedarf von mindestens 4 Monaten über etwa 1/2 Jahr gespeichert werden, zusätzlich zum Tagesspeicher, der die Tag/Nacht-Volatilität ausgleicht. Das sind 120 Tage und demnach eine mindestens notwendige Gesamtspeicherkapazität von 1,2 MWh. Bei einem — sehr günstig angenommenen — Batteriepreis von 500 €/kWh sind das 600 000 € für den Batteriespeicher, bei einer Lebensdauer von 10 Jahren, von der Umweltbelastung und dem Platzbedarf für diese riesige Speichermenge ganz abgesehen. Das wären reine Batteriekosten von 60 000 € pro Winter – ausschließlich für den Strombedarf, ohne Heizung oder Mobilität. Eine Studie zeigt am Beispiel der Versorgung eines Rechenzentrums, dass eine Langzeitspeicherung nur in chemischer Form, also z.B. Wasserstoff oder Methangas (Power-to-gas) erfolgen kann, bei der Energiespeicherung mit flüssigem Wasserstoff wäre der durchschnittliche Strompreis etwa 120 \$/MWh, bei einer hypothetischen Speichung mit Li-Ionen Batterien wäre er über 4000 \$/MWh.
Das Power-to-Gas Verfahren hat mit PV-Strom den gleichen CO2 Fußabdruck wie fossiles Erdgas
Auch wenn man bei nachhaltiger Forstwirtschaft nicht wirklich von Landschaftsverbrauch sprechen kann, wollen wir diese Kenngröße ($\frac{km^2}{TWh/Jahr})$ im Sinne von benötigter Fläche zum Erzeugen einer bestimmten Energiemenge berechnen, um einen Bezug zu anderen Energiepflanzen herstellen zu können. $$ \frac{1}{10\cdot\1.4\cdot 1800} \frac{ha}{kWh/Jahr} = \frac{10^7}{25200}\frac{km^2}{TWh\cdot Jahr} \approx 400\frac{km^2}{TWh/Jahr} $$
Selbst bei einer Steigerung der nachhaltigen energetischen Nutzung auf 2/3 der Waldfläche ist damit der in Deutschland maximal erreichbare Energieertrag (wegen der Nutzung weniger energiereichen Holzes wird der angenommene Heizwert auf 1500 $\frac{kWh}{Rm} $ gesenkt) $$ 11\cdot 10^6 ha \cdot\frac{2}{3}\cdot 10 \frac{Fm}{ha}\cdot 1.4\frac{Rm}{Fm}\cdot 1500\frac{kWh}{Rm} = 154 TWh/Jahr $$
Die beiden Kreisläufe des Cradle to Cradle Konzepts
Die Produkte im Biologischen Kreislauf müssen vollständig biologisch abbaubar sein und müssen verträglich mit den Kriterien der Ökologie, also Natur- und Landschaftsschutz. Dazu gehört insbesondere auch das gesundheitliche und seelische Wohlbefinden der Menschen.
Der Technischen Kreislauf ist zweifellos die Grundlage von Lebensqualität und Wohlstand. Hier kommen auch Stoffe und Prozesse vor, vor denen der Biologische Kreislauf geschützt werden muß.
Beiden Kreisläufen ist konzeptionell gemeinsam, dass sie gemäß der Zielvorstellung geschlossen sind – es dürfen per Definition keine Abfälle zurückbleiben. Alles wird entweder wiederverwendet oder es wird in verträglicher Form dem Biologischen Kreislauf zurückgegeben. Viele Alltagsprozesse sowie Produktionsprozesse der Industrie und auch der Landwirtschaft entsprechen nicht diesem strengen Kriterium. Dabei ist zu unterscheiden:
existierende Prozesse, Produkte und Einrichtungen, die aufgrund von Verträgen, Genehmigungen und gesetzlichen Regelungen Bestandsschutz und Investitionsschutzgarantien genießen. Dazu gehören z.B. existierende Wohngebäude, die entsprechend der erteilten Baugenehmigung gebaut wurden. Leichtfertige, politisch motivierte Verletzungen dieser Grundsätze führen in der Regel zu sehr teuren Schadensersatzklagen und zu gesellschaftlichem Unfrieden, so wie etwa bei der widerrechtlich verkürzten Laufzeit bereits genehmigter Kernkraftwerke im Jahre 2011.
Anders ist es bei noch nicht umgesetzten, geplanten Prozessen, neuen Produkten und Einrichtungen. Bei diesen dürfen keine politisch motivierten faulen Kompromisse mit den Zielen der Nachhaltigkeit im Sinne der rückstandsfreien Kreislaufwirtschaft eingegangen eingegangen werden.
Bei der sogenannten Energiewende sind leider bislang die Kriterien der Nachhaltigkeit im Sinne einer Kreislaufwirtschaft kaum bis gar nicht berücksichtigt worden, weil eine einseitige Fokussierung auf Vermeidung von $CO_2$ alle anderen Nachhaltigkeitsprobleme verdrängte. Aufgrund des besseren Verständnisses atmosphärischer Prozesse (siehe auch hier) kann mit großer Sicherheit davon ausgegangen werden, dass es auch bei weiterer $CO_2$-Erzeugung nicht zu so dramatischen „Klimafolgen“ kommen wird, die rechtfertigen würden, alle anderen Anforderungen des Natur- und Landschaftsschutzes zu vernachlässigen – „…wir dürfen nicht zulassen, dass die Regenerativen Energien unsere Umwelt zerstören“ (siehe auch hier)
Größenordnung der Nutzung regenerativer Energie
Bei den folgenden Betrachtungen soll der Schwerpunkt auf Wind- und Solarenergie liegen, daher werden folgende zur nachhaltigen Energiegewinnung gerechneten Technologien nur kurz erwähnt – was nicht heißt, dass Nachhaltigkeitsbetrachtungen bei ihnen unwesentlich sind:
Bio-Treibstoffe: Bio-Treibstoffe bergen grundsätzlich das potentielle Problem des großen Flächenverbrauchs und -mißbrauchs, da der nachhaltige Ertrag von z.B. Holz auf 0,5 $\frac{W}{m^2}$ begrenzt ist (das entspricht einem jährlichen Holzertrag von 10 Raummeter/ha). Es spricht nichts gegen eine Nutzung von Brennholz im Rahmen der forstwirtschaftlich gesunden Nachhaltigkeitsgrenzen ( in Deutschland aktuell 60 Mio Festraummeter) Dazu kommt das Problem der Monokulturen beim Anbau von „Energiepflanzen“ und der gefährlichen Konkurrenz von profitablen Energiepflanzen und Nahrungsmitteln, was unweigerlich die Verteuerung von Nahrungsmitteln zur Folge hat.
Anteil erneuerbarer Energie bei Strom, Wärme und Verkehr
Kritische Analyse der Energiewendemaßnahmen
Für eine wirklich zukunftsfähige Infrastruktur müssen die Maßnahmen der Energiewende daran gemessen werden, inwieweit sie dem Konzept der oben beschriebenen Kreislaufwirtschaft Genüge tun, also müssen bei jeder Maßnahme diese Aspekte überprüft werden:
Es gibt sehr starkte Indizien, dass nach einer Studie, über die in der New York Times berichtet wird, die Solarzellen in China mit Zwangs- und Sklavenarbeit hergestellt werden. Das erklärt die sensationell niedrigen Preise chinesischer Solarzellen, die zur Geschäftsaufgabe fast aller einst erfolgreichen deutschen Hersteller von Solarzellen führten. Warum führen diese Menschenrechtsverletzungen nicht zum Boykott chinesischer Photovoltaik-Anlagen?
Internierungslager in Xinjiang. Zitatquelle: New York Times
Der Betrieb von Solaranlagen ist bislang in zweierlei Hinsicht parasitär, d.h. die Anlagen leben davon, dass es nukleare oder fossile Stromversorgung gibt:
Zum einen sind sie von Anfang an bis heute stark subventioniert, die Nutzer konventionellen Stroms müssen mehr bezahlen, um den solar erzeugten Strom zu finanzieren,
zum anderen wird solarer Strom nicht nachfrageorientiert erzeugt, sondern wann immer die Sonne grade scheint. Insbesondere an den Abenden, wo die Hauptlast der privaten Haushalte ist, fällt die solare Versorgung ganz aus. Im Winter ist die solare Stromerzeugung vernachlässigbar gering. Das bedeutet, dass solare Stromerzeugung zu 100% mit anderen Methoden der Stromerzeugung ersetzbar sein oder durch Speicherung gepuffert werden muß.
Solange Solaranlagen auf Hausdächer begrenzt sind, fallen sie hinsichtlich Flächenverbrauch nicht wesentlich ins Gewicht. Bei dem geplanten massiven Ausbau (500 GW installierte Leistung bis 2050, also 10 fache installierte Leistung von heute ) ist zu erwarten, dass zunehmend auch auf Freiflächen Solaranlagen installiert werden, die dann entweder mit der Landwirtschaft oder mit dem Naturschutz konkurrieren. Eine optimistische Beispielrechnung für den amerikanischen Bundesstaat Ohio kommt zu dem Schluß, dass höchstens die Hälfte des notwendigen Strombedarfs durch Dachinstallationen gedeckt werden kann.
Bei großflächigen Installationen ist zudem die Auswirkung von Solarmodulen auf die Veränderung der Erd-Albedo zu berücksichtigen – Solarmodule sind schwarz und ihr Ziel ist es, möglichst viel Strahlung zu absorbieren -, die zu absehbaren problematischen Auswirkungen auf’s Klima führen.
Beispiele von Versiegelung von Landschaften durch Photovoltaik-Anlagen:
Den Landverbrauch von Solaranlagen kann man durch die erzielbare Energiedichte angeben. Infolge der optimierten Ausrichtung der Solarmodule können die Module nicht beliebig dicht aufgestellt werden, dies führt in der Regel zum 3-fachen Landverbrauch im Vergleich zur aktiven Kollektorfläche. Realistisch können also 6,8 W volatile Durchschnittsleistung pro $m^2$ erzielt werden, in Ausnahmefällen 10 W. Um im Durchschnitt ein Kraftwerk mit der Leistung 1 GW durch Photovoltaik zu ersetzen, wird also eine Landfläche von 147 $km^2$ benötigt, ein Quadrat mit der Seitenlänge von 12,1 km. Damit ist aber noch lange nicht das Kraftwerk ersetzt, denn der solare Strom ist volatil, und muß unter Leistungsverlust (z.B. mit flüssigem Wasserstoff) gespeichert werden, was den Flächenverbrauch nochmal vergrößert auf mindestens 176 $km^2$ pro GW elektrischer Leistung.
Der Preis für’s Recycling beträgt aktuell etwa 15€ für ein Paneel, was das Recycling bei einem Neupreis von etwa 150€ wirtschaftlich unattraktiv macht.
Staatlich gelenkte gezielte Verleumdung derjenigen, die sich z.B. aus Naturschutzgründen gegen den Ausbau von Windenergie in Wäldern oder anderen „umweltkritschen“ Gebieten einsetzen, wie in Kleine Staatskunde für Windkraftprofiteure.
14.000 Turbinen verrotten in den USA – jede Turbine – 1.671 Tonnen Material, darunter 1300 Tonnen Beton, 295 Tonnen Stahl, 48 Tonnen Eisen, 24 Tonnen Glasfaser, 4 Tonnen Kupfer, chinesische Seltenerdmetalle, 0,4 Tonnen Neodym und 0,065 Tonnen Dysprosium. 43 Millionen Tonnen Schaufelabfälle
Elektromobilität
Das zentrale Problem in Bezug auf die Umwelt ist die Speicherung der elektrischen Energie mittels Lithium-Ionen Batterien. Hierzu werden insbesondere große Mengen an Lithium, Kobalt, Nickel, Mangan und anderen Seltenen Erden benötigt. Probleme gibt es es in allen Phasen des „Lebenszyklus“, bei Erzeugung, Betrieb und Entsorgung.
Ausgangspunkt sind die natürlichen unterirdischen Vorkommen einer Salzlösung mit 0.15% Lithiumgehalt, gemischt mit 2.5% Kaliumgehalt in einer Gegend, die zu den trockensten der Erde gehört und eine große Hitze herrscht.
Der Lithium-Verdampfungsprozess
Diese Salzlake wird aus 1.5-60m Tiefe in große Verdampfungsbecken geleitet. In der ersten Phase der Verdunstung, während eines Zeitraums von 6-9 Monaten, wird das Kaliumsalz ausgefällt. Nach Überleitung in eine zweite Gruppe von Verdunstungsteichen wird die Lösung aus 6% Lithiumgehalt angereichert.
Lithium Verdampfungsbecken
Nach dieser Anreicherung wird die Lithiumcloridlösung abgepumpt und in Chemiefabriken transportiert, wo eine Umwandlung nach Lithiumhydroxid und Lithiumcarbonat erfolgt.
Die erste wichtige Größe ist der Energieeinsatz, der zur Herstellung notwendig ist:
Notwendiger Energieeinsatz zur Herstellung einer Lithium-Ionen Batterie
Genau betrachtet ist die Energie-Skala dimensionslos, weil 1 J = 1 Ws ist, also 1 kWh = 3,6 MJ . 1200 MJ/kWh bedeutet, dass zur Herstellung einer Batterie mit 1 kWh Kapazität die Energie von etwa 333 vollständigen Ladezyklen notwendig ist. Die Angaben der Lebensdauer von Akkus gehen weit auseinander, sie werden auf 500- 3000 Ladezyklen geschätzt.
Die zweite wichtige Kennzahl ist der „$CO_2$-Fußabdruck“, also die Erzeugung von $CO_2$ pro kWh Batteriekapazität:
Treibhausgas-Emissionen pro kWh Batterie-Kapazität
Die $CO_2$ Emissionen für die Herstellung einer 100 kWh Batterie (Tesla Model X) in einem Elektroauto (entspricht einer theoretischen 500 km Reichweite — ohne Heizung oder Klimaanlage — bei einem Verbrauch von 20 kWh/100 km) betragen demnach 7500 kg $CO_2$. Bei einem angenommenen Grenzwert von 100 $g CO_2 /km$ entspricht dies der Fahrleistung von 75.000 km eines schadstoffarmen Dieselfahrzeugs. Dabei ist noch nicht der $CO_2$ Fußabdruck der Stromerzeugung berücksichtigt.
Eine Umstellung auf Elektromobilität erfordert gigantische Maßnahmen der Umstellung der gesamten Infrastruktur:
Stromversorgung von Millionen von Fahrzeugen ist für das aktuelle Stromnetz nicht vorgesehen
Die „überschießenden Stromspitzen“ von Wind- und solarer Elektrizitätsproduktion, die durch Elektrolyse mit Hilfe von Wasserstoff gespeichert werden, reichen maximal für den Betrieb von 200.000 Fahrzeugen
Das Hauptproblem bleibt. Wir sind weit entfernt von einem geschlossenen Kreislauf, wie er vom Cradle-to-Cradle Prinzip gefordert wird. Die Richtlinien der EU fordern aktuell lediglich ein 50% Recylcling der Batterien. Dies kann durch die Komplexität der Bauweise dann so „getrickst“ werden, dass die Kernbestandteile, die Akku-Zellen, gar nicht recycled werden, weil dies immer noch sehr aufwendig und teuer ist.
Gebäudedämmung, Biotreibstoffe etc.
Diese Themen bergen ebenfalls Risiken bezüglich der Wiederverwendbarkeit und der schädlichen Einflüsse auf den ökologischen Kreislauf.
Sie werden in einer künftigen Erweiterung dieses Beitrags behandelt.
Intelligentes Produktdesign und geschlossene Kreisläufe statt Recycling
Cradle to Cradle (C2C) steht im Gegensatz zum bisherigen End-Of-Pipe Ansatz, mit dem wir nur an den Symptomen herumdoktern. Statt wie beim Recycling am Ende eines Produktlebens zu schauen, welche Rohstoffe noch mühsam extrahiert und wiederverwendet werden können (ein erheblicher Teil wandert anschließend doch in die Müllverbrennung oder wird nur „downgecycelt“), stellt C2C die Produktentwicklung und die folgenden Fragen in den Fokus:
Welche Materialien und Chemikalien habe ich verbaut? Sind sie positiv definiert? Kenne ich ihre Auswirkungen auf Mensch und Natur?
Was passiert mit meinem Produkt nach der Nutzungsphase? Wie verhindere ich, dass es zu Abfall wird?
Kann ich alle genutzten Materialien so verbauen, dass sie nachher sortenrein trenn- und wiederverwendbar (Technischer Kreislauf) oder kompostierbar (Biologischer Kreislauf) sind?
Kann ich dem Produkt einen zusätzlichen positiven Nutzen hinzufügen?
Damit ist C2C eines der wenigen Nachhaltigkeitskonzepte, das sich an Unternehmen richtet und diese schon in der Produktentwicklung in „Verantwortung“ nimmt. Zusätzlich sollten wir als Gesellschaft das Konzept „Müll“ aus unseren Köpfen streichen, und alles als Nährstoff für Neues – für neue Produkte oder für die Natur – anfangen zu begreifen!
Wird Cradle to Cradle konsequent umgesetzt, können Produkte mit einen öko-effektiven Nutzen entstehen:
So gibt es Teppiche, die nicht nur immer wieder in einem technischen Kreislauf zirkulieren können, sondern durch ihre spezielle Oberfläche aus Garn auch Feinstaub aus der Luft filtern können.
Oder kompostierbare T-Shirts, deren Mikrofaserabrieb sich zersetzt und so nicht als Mikroplastik in den Meeren landet.
Desweiteren wird an speziellen Eisverpackungen geforscht, die ihre Eigenschaften nur gekühlt behalten, sich jedoch in Wasser auflösen, sobald sie Zimmertemperatur erreichen.
Dabei geht es oftmals nicht nur um klassisches Ökodesign, sondern vielmehr auch um Qualität. C2C birgt das Potential, alle Dinge um uns herum nochmals mit der Brille der Kreislauffähigkeit und Öko-Effektivität auf den Prüfstand zu nehmen.
Neue Geschäftsmodelle
Zudem können komplett neue Geschäftsmodelle entstehen:
Besagter Teppichhersteller etwa least seine Teppiche im Business-to-Business-Sektor für etwa 6 Jahre und nimmt sie danach zurück. Er stellt so sicher, dass er die Rohstoffe wieder nutzen kann. Und er muss die kompletten Entwicklungs- und Produktionskosten plus Gewinnmarge nicht mit einem einmaligen Verkauf einspielen, sondern kann dies über eine längere Zeitdauer mit mehreren Leasing-Verträgen realisieren.
Beim Bau der Venlo City Hall in den Niederlanden wurden stattdessen die Baufirmen schon heute für einen geordneten Rückbau in 50 Jahren verpflichtet. Verbaute wertvolle Materialien, wie das Aluminium der Fensterprofile, werden als Investition angesehen, welche später gewinnbringend veräußert werden können. Der Rückbau wird also keinen Sondermüll verursachen, sondern zusätzliche Gewinne erzielen.
Cradle to Cradle läßt sich zusammenfassen zu:
Abfall ist Nährstoff – für neue Produkte oder für die Natur
Erst Ökoeffektivität und Qualität, dann Ökoeffizienz
Circular Economy birgt Potential für Entkopplung von Wirtschaftswachstum und Ressourcenverbrauch – und für neue Geschäftsmodelle
Die zentrale Botschaft der C2C Denkschule lautet aber: Habe Mut, deinen eigenen positiven Fußabdruck zu hinterlassen.