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Introduction – potential deficit of the simple
linear carbon sink model
With the simple linear carbon sink model the past relation
between  anthropogenic  emissions  and  atmospheric  CO2
concentration can be excellently modelled, in particular when
using the high quality emission and concentration data after
1950.
The model makes use of the mass conservation applied to the
CO2-data, where $C_i$ is the CO2 concentration in year $i$,
$E_i$ are the anthropogenic emissions during year $i$, $N_i$
are all other CO2 emissions during year $i$ (mostly natural
emissions), and $A_i$ are all absorptions during year $i$. We
assume emissions caused by land use change to be part of the
natural emissions, which means that they are assumed to be
constant. Due to the fact that their measurement error is very
large, this should be an acceptable assumption.
With the concentration growth $G_i$
$G_i = C_{i+1}-C_i $
we get from mass conservation the yearly balance
$ E_i + N_i – A_i = G_i $
$E_i$ and $G_i$ are measured from known data sets (IEA and
Maona Loa), and we define the effective sink $S_i$ as
$S_i = A_i – N_i$
The atmospheric carbon balance therefore is
$E_i – G_i = S_i $
The effective sink ist modelled as a linear function of the
CO2-concentration by minimizing
$\sum_i (S_i – \hat{S}_i)^2$
w.r.t. $a$ and $n$, where
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$\hat{S}_i = a\cdot C_i + n $
The equation can be re-written to
$\hat{S}_i = a\cdot (C_i – C^0)$
where
$C^0 = -\frac{n}{a}$
is  the  average  reference  concentration  represented  by  the
oceans and the biosphere. The sink effect is proportional to
the  difference  of  the  atmospheric  concentration  and  this
reference  concentration.  In  the  simple  linear  model  the
reference concentration is assumed to be constant, implying
that these reservoirs are close to inifinite. Up to now this
is supported by the empirical data.
This procedure is visualized here:

This  results  in  an  excellent  model  reconstruction  of  the
measured concentration data:



It is important to note that the small error since 2010 is an
over-estimation of the actual measured data, which means that
the estimated sink effect is under-estimated. Therefore we can
safely say that currently we do not see the slightest trend of
a possible decline of the 2 large sink systems, the ocean sink
and the land sink from photosynthesis.

Nevertheless it can be argued that in the future both sink
systems may enter a state of saturation, i.e. a lack of the
ability to absorb surplus carbon from the atmosphere. As a
matter of fact it is claimed from the architects of the Bern
model and representatives of the IPCC that the capacity of the
ocean  is  not  larger  than  5  times  the  capacity  of  the
atmosphere, and therefore future ability to take up extra CO2
will rapidly decline. We don’t see this claim justified by
data, but before we can prove that the claim is not justified,
we will adapt the model to make it capable of calculating
varying sink capacities.



Extending  the  model  with  a  second  finite
accumulating box
In order to take care of the finite size of both the ocean and
the land sinks, we do not pretend that these sink systems are
infinite, but assume a second box besides the atmosphere with
a concentration $C^0_i$, taking up all CO2 from both sink
systems. The box is assumed to be $b$ times larger than the
atmosphere,  therefore  for  a  given  sink-related  change  of
atmosphere  concentration  ($-S_i$)  we  get  an  increase  of
concentration in the „sink box“ of the same amount ($S_i$) but
reduced by the factor b:
$ C^0_{i+1} = C^0_i + \frac{1}{b}\cdot S_i $
The  important  model  assumption  is  that  $C^0_i$  is  the
reference concentration, which determines future sink ability.
The initial value is the previously calculated equilibrium
concentration $C^0$
$C^0_0 = C^0$
Therefore by evaluation of the recursion we get
$C^0_i = C^0 + \frac{1}{b}\sum_{j=1}^i S_i$
The main modelling equation is adapted to
$\hat{S}_i = a\cdot (C_i – C^0_i)$
or
$\hat{S}_i = a\cdot (C_i – \frac{1}{b}\sum_{j=1}^i S_i) + n $

Obviously measurements must be started at the time where the
anthropogenic emissions are still close to 0. Therefore we
begin with the measurements from 1850, being aware that the
data before 1959 are much less reliable than since then. There
are reasons to assume that before 1950 land use change induced
emissions  play  a  stronger  role  than  later.  But  there  are
strong reasons, that the estimated IEA values are too large,
so in order to reach a reference value $C^0$ close to 280 ppm,
an aequate weight for land use change emissions is 0.5.



Results for different scenarios
We will now evaluate the actual emission and concentration
measurements for 3 different scenarios, for b=5, b=10, and
b=50.
The first scenario (b=5) is considered to be the worst case
scenario, rendering similar results as the Bern model.
The last scenario (b=50) corresponds to the „naive“ view that
the CO2 in the oceans is equally distributed, making use of
the full potential buffer capacity of the oceans.
The second scenario (b=10) is somewhere in between.

Szenario b=5: Oceans and land sinks have 5 times the
atmospheric capacity
The „effective Concentration“ used for estimating the model
reduces the measured concentration by the weighted cumulative
sum of the the effective sinks with $b=5$. We see, that before
1900  there  is  hardly  any  difference  to  the  measured
concentration:



First  we  reconstruct  the  original  data  from  the  model
estimation:



Now we calculate the future scenarios:

Constant emissions after 2023

In  order  to  understand  the  reduced  sink  factor,  we  first
investigate the case where emissions remain constant after
2023. By the end of 2200 CO2 concentration would be close to
600 ppm, with no tendency to flatten.

Emission reductions to reach equilibrium and keep permanently
constant concentration

It is easy to see that under the given conditions of a small
CO2 buffer, the concentration keeps increasing when emissions
are constant. The interesting question is, how the emission
rate  has  to  be  reduces  in  order  to  reach  a  constant
concentration.
From the model setup one would assume that the yearly emission
reduction should be $\frac{a}{b} \approx 0.005$, and indeed,
with a yearly emission reduction of 0.5% after 2023, we reach
a constant concentration eventually and hold it. This means
that emission rates have to be cut to half within 140 years –



provided the pessimistic assumption $b=5$ turns out to be
correct:

Fast reduction to 50% emissions, then keeping concentration
constant

An interesting scenario is the one, which cuts emissions to
half the current amout within a short time, and then trying to
keep the concentration close to the current level:



Scenario b=10: Oceans and land sinks have 10 times
atmospheric capacity
Assuming the capacity of the (ocean and plant) CO2 reservoir
to  be  10-fold  results,  as  expected,  to  half  the  sink
reduction.



It  does  not  change  significantly  the  model  approximation
quality to the actual CO2 concentration data:



Constant emissions after 2023

The growth of the concentration for constant emissions is now
smaller than 550 ppm by the end of 2200, but still growing.

Emission reductions to reach equilibrium and keep permanently
constant concentration

The emission reduction rate can be reduced to 0.2% in order to
compensate the sink reduction rate:



Fast reduction to 50% emissions, then keeping concentration
constant

This is easier to see for the scenario, which reduces swiftly
emissions to 50%. with peak concentration below 440 ppm, the
further slow reduction with 0.2% p.a. keeps the concentration
at about 415 ppm.



Szenario b=50: Oceans and land sinks have 50 times the
atmospheric capacity
This scenario comes close to the original linear concentration
model, which does not consider finite sink capacity.



Again, the reconstruction of the existing data shows no large
deviation:



Constant emissions after 2023

Emission reductions to reach equilibrium and keep permanently
constant concentration

We  only  need  a  yearly  reduction  of  0.05%  for  reaching  a
permanently constant CO2 concentration of under 500 ppm:



Fast reduction to 50% emissions, then keeping concentration
constant

This scenario hardly increases today’s CO2-concentration and
approximates eventually 400 ppm:



How to decide which model parameter b is correct?
It appears that with measurement data up to now it cannot be
decided whether the sink receivers are finite, and if so, how
limited they are.

The  most  sensitive  detector  from  simple  non-disputed
measurements appears to be the concentration growth. I can be
measured from both the actually measured data in the past,



but also in the modelled data at any time. When comparing the
concentration growth with future constant emissions of the 2
cases b=5 and b=50, we get this result:



This implies that with the model b=5 concentration growth will
never  be  under  0.8  ppm,  whereas  with  the  model  b=50  the
concentration growth decreases to appr. 0.1 ppm. But these
large differences will only show up in many years, apparently
not before 2050.

Preliminary Conclusions
Due to the fact that measurement data up to the current time
can be reproduced well by both the Bern model as well as the
simple linear sink model, it cannot be reliably decided with
current data yet how large the effective size of the carbon
sinks are. When emissions remain constant for a longer period
of time, we expect to be able to perform a statistical test
for the most likely value of the sink size factor b.

Nevertheless this extended sink model allows us to calculate
the  optimal  rate  of  emission  reduction  for  a  given  model
assumption.  Even  in  the  worst  case  the  required  emission
reduction is so small, so that any short term „zero emission“
targets are not justified.



A related conclusion is the possibility of a re-calculation of
the  available  CO2-budget.  Given  a  target  concentration
C$_{target}$ the total bugdet is the amount of CO2 required to
fill up both atmosphere and accumulating box up to the target
concentration.
Obviously the target concentration must be chosen in such a
way,  that  it  is  compatible  with  the  environmental
requirements.


